Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if patch_size > 0:
print('Cropping a {p}x{p} patch from the middle'.format(p=patch_size))
xx = (sample_x.shape[2] - patch_size // 2) // 2
yy = (sample_x.shape[1] - patch_size // 2) // 2
sample_x = sample_x[:, yy:yy+patch_size, xx:xx+patch_size, :]
sample_y = sample_y[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
sample_ya = sample_ya[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
sample_yb = sample_yb[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
# Plot images
fig = imdiff.compare_ab_ref(sample_y, sample_ya, sample_yb, fig=plt.figure(), extras=extras)
if output_dir is not None:
from tikzplotlib import save as tikz_save
dcomp = [x for x in fsutil.split(model_b_dirname) if re.match('(ln-.*|[0-9]{3})', x)]
tikz_save('{}/examples_{}_{}_{}_{}.tex'.format(output_dir, camera, image, model_a_dirname, model_b_dirname), figureheight='8cm', figurewidth='8cm', strict=False)
else:
fig.tight_layout()
fig.show(fig)
fig.suptitle('{}, A={}, B={}'.format(image, model_a.model_code, model_b.model_code))
plt.show()
plt.close(fig)
parameters[k] = list()
parameters[k].append(parameters_all[k])
# Count for every parameter how many times a setting occurs
counts = count_parameters(parameters)
# Normalize the values
normalization_factor = len(prediction.classifiers) * estimators
# Make the barplot
fig = plot_bars(counts, normalization_factor)
# Save the output
if output_tex is not None:
print(f'Saving barchart to {output_tex}.')
tikzplotlib.save(output_tex)
if output_png is not None:
print(f'Saving barchart to {output_png}.')
fig.savefig(output_png, bbox_inches='tight', pad_inches=0, dpi=50)