How to use thewalrus - 10 common examples

To help you get started, we’ve selected a few thewalrus examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github XanaduAI / thewalrus / thewalrus / quantum.py View on Github external
if not is_pure_cov(cov, hbar=hbar, rtol=1e-05, atol=1e-08):
            raise ValueError("The covariance matrix does not correspond to a pure state")

    rpt = i
    beta = Beta(mu, hbar=hbar)
    Q = Qmat(cov, hbar=hbar)
    A = Amat(cov, hbar=hbar)
    (n, _) = cov.shape
    N = n // 2
    B = A[0:N, 0:N].conj()
    alpha = beta[0:N]

    if np.linalg.norm(alpha) < tol:
        # no displacement
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            haf = hafnian(B_rpt)
        else:
            haf = hafnian_repeated(B, rpt)
    else:
        gamma = alpha - B @ np.conj(alpha)
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            np.fill_diagonal(B_rpt, reduction(gamma, rpt))
            haf = hafnian(B_rpt, loop=True)
        else:
            haf = hafnian_repeated(B, rpt, mu=gamma, loop=True)

    if include_prefactor:
        pref = np.exp(-0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha))
        haf *= pref
github XanaduAI / thewalrus / thewalrus / quantum.py View on Github external
N = n // 2
    B = A[0:N, 0:N].conj()
    alpha = beta[0:N]

    if np.linalg.norm(alpha) < tol:
        # no displacement
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            haf = hafnian(B_rpt)
        else:
            haf = hafnian_repeated(B, rpt)
    else:
        gamma = alpha - B @ np.conj(alpha)
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            np.fill_diagonal(B_rpt, reduction(gamma, rpt))
            haf = hafnian(B_rpt, loop=True)
        else:
            haf = hafnian_repeated(B, rpt, mu=gamma, loop=True)

    if include_prefactor:
        pref = np.exp(-0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha))
        haf *= pref

    return haf / np.sqrt(np.prod(fac(rpt)) * np.sqrt(np.linalg.det(Q)))
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
n1, n2 = cov.shape

    if n1 != n2:
        raise ValueError("Covariance matrix must be square.")

    nmodes = n1 // 2
    prev_prob = 1.0
    mu = np.zeros(n1)

    for k in range(nmodes):
        probs1 = np.zeros([2], dtype=np.float64)
        kk = np.arange(k + 1)
        _, V_red = reduced_gaussian(mu, cov, kk)

        Q = Qmat(V_red, hbar=hbar)
        A = Amat(Q, hbar=hbar, cov_is_qmat=True)
        O = Xmat(k + 1) @ A

        indices = result + [0]
        ind2 = indices + indices

        probs1[0] = tor(np.complex128(reduction(O, ind2))).real

        indices = result + [1]
        ind2 = indices + indices
        pref = np.sqrt(np.linalg.det(Q).real)
        probs1a = probs1 / pref

        probs2 = probs1a / prev_prob
        probs2[1] = 1.0 - probs2[0]
        probs1a[1] = probs2[1] * prev_prob
        probs3 = np.maximum(
github XanaduAI / thewalrus / thewalrus / operations.py View on Github external
(array): Tensor containing the Fock representation of the Gaussian unitary
    """
    # Check the matrix is symplectic
    if check_symplectic:
        if not is_symplectic(S, rtol=rtol, atol=atol):
            raise ValueError("The matrix S is not symplectic")

    # And that S and alpha have compatible dimensions
    l, _ = S.shape
    if l // 2 != len(alpha):
        raise ValueError("The matrix S and the vector alpha do not have compatible dimensions")

    # Construct its Choi expansion and then the covariance matrix and A matrix of such pure state
    S_exp = choi_expand(S, r)
    cov = S_exp @ S_exp.T
    A = Amat(cov)

    # Because the state is pure then A = B \oplus B^*. We now extract B^* and follow the procedure
    # described in the paper cited above.
    n, _ = A.shape
    N = n // 2
    B = A[0:N, 0:N].conj()

    # Now we need to figure out the loops (cf. Eq. 111 of the reference above)
    l = len(alpha)
    alphat = np.array(list(alpha) + ([0] * l))
    zeta = alphat - B @ alphat.conj()

    # Finally, there are the prefactors (cf. Eq. 113 of the reference above).
    # Note that the factorials that are not included here from Eq. 113 are calculated
    # internally by hafnian_batched when the argument renorm is set to True
    pref_exp = -0.5 * alphat.conj() @ zeta
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
n1, n2 = cov.shape

    if n1 != n2:
        raise ValueError("Covariance matrix must be square.")

    nmodes = n1 // 2
    prev_prob = 1.0
    mu = np.zeros(n1)

    for k in range(nmodes):
        probs1 = np.zeros([2], dtype=np.float64)
        kk = np.arange(k + 1)
        _, V_red = reduced_gaussian(mu, cov, kk)

        Q = Qmat(V_red, hbar=hbar)
        A = Amat(Q, hbar=hbar, cov_is_qmat=True)
        O = Xmat(k + 1) @ A

        indices = result + [0]
        ind2 = indices + indices

        probs1[0] = tor(np.complex128(reduction(O, ind2))).real

        indices = result + [1]
        ind2 = indices + indices
        pref = np.sqrt(np.linalg.det(Q).real)
        probs1a = probs1 / pref

        probs2 = probs1a / prev_prob
        probs2[1] = 1.0 - probs2[0]
        probs1a[1] = probs2[1] * prev_prob
        probs3 = np.maximum(
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
approx (bool): if ``True``, the approximate hafnian algorithm is used.
            Note that this can only be used for real, non-negative matrices.
        approx_samples: the number of samples used to approximate the hafnian if ``approx=True``.

    Returns:
        np.array[int]: a photon number sample from the Gaussian states.
    """
    N = len(cov) // 2
    result = []
    prev_prob = 1.0
    nmodes = N
    if mean is None:
        local_mu = np.zeros(2 * N)
    else:
        local_mu = mean
    A = Amat(Qmat(cov), hbar=hbar)

    for k in range(nmodes):
        probs1 = np.zeros([cutoff + 1], dtype=np.float64)
        kk = np.arange(k + 1)
        mu_red, V_red = reduced_gaussian(local_mu, cov, kk)

        if approx:
            Q = Qmat(V_red, hbar=hbar)
            A = Amat(Q, hbar=hbar, cov_is_qmat=True)

        for i in range(cutoff):
            indices = result + [i]
            ind2 = indices + indices
            if approx:
                factpref = np.prod(fac(indices))
                mat = reduction(A, ind2)
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
approx (bool): if ``True``, the approximate hafnian algorithm is used.
            Note that this can only be used for real, non-negative matrices.
        approx_samples: the number of samples used to approximate the hafnian if ``approx=True``.

    Returns:
        np.array[int]: a photon number sample from the Gaussian states.
    """
    N = len(cov) // 2
    result = []
    prev_prob = 1.0
    nmodes = N
    if mean is None:
        local_mu = np.zeros(2 * N)
    else:
        local_mu = mean
    A = Amat(Qmat(cov), hbar=hbar)

    for k in range(nmodes):
        probs1 = np.zeros([cutoff + 1], dtype=np.float64)
        kk = np.arange(k + 1)
        mu_red, V_red = reduced_gaussian(local_mu, cov, kk)

        if approx:
            Q = Qmat(V_red, hbar=hbar)
            A = Amat(Q, hbar=hbar, cov_is_qmat=True)

        for i in range(cutoff):
            indices = result + [i]
            ind2 = indices + indices
            if approx:
                factpref = np.prod(fac(indices))
                mat = reduction(A, ind2)
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
result = []
    n1, n2 = cov.shape

    if n1 != n2:
        raise ValueError("Covariance matrix must be square.")

    nmodes = n1 // 2
    prev_prob = 1.0
    mu = np.zeros(n1)

    for k in range(nmodes):
        probs1 = np.zeros([2], dtype=np.float64)
        kk = np.arange(k + 1)
        _, V_red = reduced_gaussian(mu, cov, kk)

        Q = Qmat(V_red, hbar=hbar)
        A = Amat(Q, hbar=hbar, cov_is_qmat=True)
        O = Xmat(k + 1) @ A

        indices = result + [0]
        ind2 = indices + indices

        probs1[0] = tor(np.complex128(reduction(O, ind2))).real

        indices = result + [1]
        ind2 = indices + indices
        pref = np.sqrt(np.linalg.det(Q).real)
        probs1a = probs1 / pref

        probs2 = probs1a / prev_prob
        probs2[1] = 1.0 - probs2[0]
        probs1a[1] = probs2[1] * prev_prob
github XanaduAI / thewalrus / thewalrus / samples.py View on Github external
result = []
    n1, n2 = cov.shape

    if n1 != n2:
        raise ValueError("Covariance matrix must be square.")

    nmodes = n1 // 2
    prev_prob = 1.0
    mu = np.zeros(n1)

    for k in range(nmodes):
        probs1 = np.zeros([2], dtype=np.float64)
        kk = np.arange(k + 1)
        _, V_red = reduced_gaussian(mu, cov, kk)

        Q = Qmat(V_red, hbar=hbar)
        A = Amat(Q, hbar=hbar, cov_is_qmat=True)
        O = Xmat(k + 1) @ A

        indices = result + [0]
        ind2 = indices + indices

        probs1[0] = tor(np.complex128(reduction(O, ind2))).real

        indices = result + [1]
        ind2 = indices + indices
        pref = np.sqrt(np.linalg.det(Q).real)
        probs1a = probs1 / pref

        probs2 = probs1a / prev_prob
        probs2[1] = 1.0 - probs2[0]
        probs1a[1] = probs2[1] * prev_prob
github XanaduAI / thewalrus / thewalrus / quantum.py View on Github external
raise ValueError("The covariance matrix does not correspond to a pure state")

    rpt = i
    beta = Beta(mu, hbar=hbar)
    Q = Qmat(cov, hbar=hbar)
    A = Amat(cov, hbar=hbar)
    (n, _) = cov.shape
    N = n // 2
    B = A[0:N, 0:N].conj()
    alpha = beta[0:N]

    if np.linalg.norm(alpha) < tol:
        # no displacement
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            haf = hafnian(B_rpt)
        else:
            haf = hafnian_repeated(B, rpt)
    else:
        gamma = alpha - B @ np.conj(alpha)
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            np.fill_diagonal(B_rpt, reduction(gamma, rpt))
            haf = hafnian(B_rpt, loop=True)
        else:
            haf = hafnian_repeated(B, rpt, mu=gamma, loop=True)

    if include_prefactor:
        pref = np.exp(-0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha))
        haf *= pref

    return haf / np.sqrt(np.prod(fac(rpt)) * np.sqrt(np.linalg.det(Q)))