How to use the tables.Float64Col function in tables

To help you get started, we’ve selected a few tables examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jemm.py View on Github external
tumour_counts_A = UInt32Col( pos=6 )
    
    tumour_counts_C = UInt32Col( pos=7 )
    
    tumour_counts_G = UInt32Col( pos=8 )
    
    tumour_counts_T = UInt32Col( pos=9 )
    
    p_AA_AA = Float64Col( pos=10 )
    p_AA_AC = Float64Col( pos=11 )
    p_AA_AG = Float64Col( pos=12 )
    p_AA_AT = Float64Col( pos=13 )
    p_AA_CC = Float64Col( pos=14 )
    p_AA_CG = Float64Col( pos=15 )
    p_AA_CT = Float64Col( pos=16 )
    p_AA_GG = Float64Col( pos=17 )
    p_AA_GT = Float64Col( pos=18 )
    p_AA_TT = Float64Col( pos=19 )
    p_AA_ACG = Float64Col( pos=20 )
    p_AA_ACT = Float64Col( pos=21 )
    p_AA_AGT = Float64Col( pos=22 )
    p_AA_CGT = Float64Col( pos=23 )
    p_AA_ACGT = Float64Col( pos=24 )
    p_AC_AA = Float64Col( pos=25 )
    p_AC_AC = Float64Col( pos=26 )
    p_AC_AG = Float64Col( pos=27 )
    p_AC_AT = Float64Col( pos=28 )
    p_AC_CC = Float64Col( pos=29 )
    p_AC_CG = Float64Col( pos=30 )
    p_AC_CT = Float64Col( pos=31 )
    p_AC_GG = Float64Col( pos=32 )
github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jemm.py View on Github external
p_CC_CGT = Float64Col( pos=83 )
    p_CC_ACGT = Float64Col( pos=84 )
    p_CG_AA = Float64Col( pos=85 )
    p_CG_AC = Float64Col( pos=86 )
    p_CG_AG = Float64Col( pos=87 )
    p_CG_AT = Float64Col( pos=88 )
    p_CG_CC = Float64Col( pos=89 )
    p_CG_CG = Float64Col( pos=90 )
    p_CG_CT = Float64Col( pos=91 )
    p_CG_GG = Float64Col( pos=92 )
    p_CG_GT = Float64Col( pos=93 )
    p_CG_TT = Float64Col( pos=94 )
    p_CG_ACG = Float64Col( pos=95 )
    p_CG_ACT = Float64Col( pos=96 )
    p_CG_AGT = Float64Col( pos=97 )
    p_CG_CGT = Float64Col( pos=98 )
    p_CG_ACGT = Float64Col( pos=99 )
    p_CT_AA = Float64Col( pos=100 )
    p_CT_AC = Float64Col( pos=101 )
    p_CT_AG = Float64Col( pos=102 )
    p_CT_AT = Float64Col( pos=103 )
    p_CT_CC = Float64Col( pos=104 )
    p_CT_CG = Float64Col( pos=105 )
    p_CT_CT = Float64Col( pos=106 )
    p_CT_GG = Float64Col( pos=107 )
    p_CT_GT = Float64Col( pos=108 )
    p_CT_TT = Float64Col( pos=109 )
    p_CT_ACG = Float64Col( pos=110 )
    p_CT_ACT = Float64Col( pos=111 )
    p_CT_AGT = Float64Col( pos=112 )
    p_CT_CGT = Float64Col( pos=113 )
    p_CT_ACGT = Float64Col( pos=114 )
github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jmm.py View on Github external
p_AG_AG = Float64Col( pos=32 )
    p_AG_AT = Float64Col( pos=33 )
    p_AG_CC = Float64Col( pos=34 )
    p_AG_CG = Float64Col( pos=35 )
    p_AG_CT = Float64Col( pos=36 )
    p_AG_GG = Float64Col( pos=37 )
    p_AG_GT = Float64Col( pos=38 )
    p_AG_TT = Float64Col( pos=39 )
    p_AT_AA = Float64Col( pos=40 )
    p_AT_AC = Float64Col( pos=41 )
    p_AT_AG = Float64Col( pos=42 )
    p_AT_AT = Float64Col( pos=43 )
    p_AT_CC = Float64Col( pos=44 )
    p_AT_CG = Float64Col( pos=45 )
    p_AT_CT = Float64Col( pos=46 )
    p_AT_GG = Float64Col( pos=47 )
    p_AT_GT = Float64Col( pos=48 )
    p_AT_TT = Float64Col( pos=49 )
    p_CC_AA = Float64Col( pos=50 )
    p_CC_AC = Float64Col( pos=51 )
    p_CC_AG = Float64Col( pos=52 )
    p_CC_AT = Float64Col( pos=53 )
    p_CC_CC = Float64Col( pos=54 )
    p_CC_CG = Float64Col( pos=55 )
    p_CC_CT = Float64Col( pos=56 )
    p_CC_GG = Float64Col( pos=57 )
    p_CC_GT = Float64Col( pos=58 )
    p_CC_TT = Float64Col( pos=59 )
    p_CG_AA = Float64Col( pos=60 )
    p_CG_AC = Float64Col( pos=61 )
    p_CG_AG = Float64Col( pos=62 )
    p_CG_AT = Float64Col( pos=63 )
github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jmm.py View on Github external
tumour_counts_G = UInt32Col( pos=8 )
    
    tumour_counts_T = UInt32Col( pos=9 )
    
    p_AA_AA = Float64Col( pos=10 )
    p_AA_AC = Float64Col( pos=11 )
    p_AA_AG = Float64Col( pos=12 )
    p_AA_AT = Float64Col( pos=13 )
    p_AA_CC = Float64Col( pos=14 )
    p_AA_CG = Float64Col( pos=15 )
    p_AA_CT = Float64Col( pos=16 )
    p_AA_GG = Float64Col( pos=17 )
    p_AA_GT = Float64Col( pos=18 )
    p_AA_TT = Float64Col( pos=19 )
    p_AC_AA = Float64Col( pos=20 )
    p_AC_AC = Float64Col( pos=21 )
    p_AC_AG = Float64Col( pos=22 )
    p_AC_AT = Float64Col( pos=23 )
    p_AC_CC = Float64Col( pos=24 )
    p_AC_CG = Float64Col( pos=25 )
    p_AC_CT = Float64Col( pos=26 )
    p_AC_GG = Float64Col( pos=27 )
    p_AC_GT = Float64Col( pos=28 )
    p_AC_TT = Float64Col( pos=29 )
    p_AG_AA = Float64Col( pos=30 )
    p_AG_AC = Float64Col( pos=31 )
    p_AG_AG = Float64Col( pos=32 )
    p_AG_AT = Float64Col( pos=33 )
    p_AG_CC = Float64Col( pos=34 )
    p_AG_CG = Float64Col( pos=35 )
    p_AG_CT = Float64Col( pos=36 )
    p_AG_GG = Float64Col( pos=37 )
github uvemas / ViTables / examples / scripts / nested_samples.py View on Github external
# All the rest will be filled with defaults
        row.append()

    fileh.close()

# The sample nested class description

class Info(tables.IsDescription):
    _v_pos = 2
    Name = tables.StringCol(16, dflt='sample string')
    Value = tables.Float64Col()

class Test(tables.IsDescription):
    """A description that has several columns"""
    x = tables.Int32Col(shape=2, dflt=0, pos=0)
    y = tables.Float64Col(dflt=1.2, shape=(2, 3))
    z = tables.UInt8Col(dflt=1)
    color = tables.EnumCol(colors, 'red', base='uint32', shape=(2,))
    Info = Info()
    class extra_info(tables.IsDescription):
        _v_pos = 1
        name = tables.StringCol(10)
        value = tables.Float64Col(pos=0)
        y2 = tables.Float64Col(dflt=1, shape=(2, 3), pos=1)
        z2 = tables.UInt8Col(dflt=1)
        class info2(tables.IsDescription):
            y3 = tables.Float64Col(dflt=1, shape=(2, 3))
            z3 = tables.UInt8Col(dflt=1)
            name = tables.StringCol(10)
            value = tables.EnumCol(colors, 'blue', base='uint32', shape=(1,))
            class info3(tables.IsDescription):
                name = tables.StringCol(10)
github HiSPARC / sapphire / scripts / kascade / read_sqldump / storage.py View on Github external
mas_ch1_adc_offset = tables.Float64Col()
    mas_ch2_adc_gain = tables.Float64Col()
    mas_ch2_adc_offset = tables.Float64Col()
    mas_ch1_comp_gain = tables.Float64Col()
    mas_ch1_comp_offset = tables.Float64Col()
    mas_ch2_comp_gain = tables.Float64Col()
    mas_ch2_comp_offset = tables.Float64Col()
    slv_ch1_thres_low = tables.Float64Col()
    slv_ch1_thres_high = tables.Float64Col()
    slv_ch2_thres_low = tables.Float64Col()
    slv_ch2_thres_high = tables.Float64Col()
    slv_ch1_inttime = tables.Float64Col()
    slv_ch2_inttime = tables.Float64Col()
    slv_ch1_voltage = tables.Float64Col()
    slv_ch2_voltage = tables.Float64Col()
    slv_ch1_current = tables.Float64Col()
    slv_ch2_current = tables.Float64Col()
    slv_comp_thres_low = tables.Float64Col()
    slv_comp_thres_high = tables.Float64Col()
    slv_max_voltage = tables.Float64Col()
    slv_reset = tables.BoolCol()
    slv_ch1_gain_pos = tables.UInt8Col()
    slv_ch1_gain_neg = tables.UInt8Col()
    slv_ch2_gain_pos = tables.UInt8Col()
    slv_ch2_gain_neg = tables.UInt8Col()
    slv_ch1_offset_pos = tables.UInt8Col()
    slv_ch1_offset_neg = tables.UInt8Col()
    slv_ch2_offset_pos = tables.UInt8Col()
    slv_ch2_offset_neg = tables.UInt8Col()
    slv_common_offset = tables.UInt8Col()
    slv_internal_voltage = tables.UInt8Col()
    slv_ch1_adc_gain = tables.Float64Col()
github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jmm.py View on Github external
p_AT_CT = Float64Col( pos=46 )
    p_AT_GG = Float64Col( pos=47 )
    p_AT_GT = Float64Col( pos=48 )
    p_AT_TT = Float64Col( pos=49 )
    p_CC_AA = Float64Col( pos=50 )
    p_CC_AC = Float64Col( pos=51 )
    p_CC_AG = Float64Col( pos=52 )
    p_CC_AT = Float64Col( pos=53 )
    p_CC_CC = Float64Col( pos=54 )
    p_CC_CG = Float64Col( pos=55 )
    p_CC_CT = Float64Col( pos=56 )
    p_CC_GG = Float64Col( pos=57 )
    p_CC_GT = Float64Col( pos=58 )
    p_CC_TT = Float64Col( pos=59 )
    p_CG_AA = Float64Col( pos=60 )
    p_CG_AC = Float64Col( pos=61 )
    p_CG_AG = Float64Col( pos=62 )
    p_CG_AT = Float64Col( pos=63 )
    p_CG_CC = Float64Col( pos=64 )
    p_CG_CG = Float64Col( pos=65 )
    p_CG_CT = Float64Col( pos=66 )
    p_CG_GG = Float64Col( pos=67 )
    p_CG_GT = Float64Col( pos=68 )
    p_CG_TT = Float64Col( pos=69 )
    p_CT_AA = Float64Col( pos=70 )
    p_CT_AC = Float64Col( pos=71 )
    p_CT_AG = Float64Col( pos=72 )
    p_CT_AT = Float64Col( pos=73 )
    p_CT_CC = Float64Col( pos=74 )
    p_CT_CG = Float64Col( pos=75 )
    p_CT_CT = Float64Col( pos=76 )
    p_CT_GG = Float64Col( pos=77 )
github aroth85 / JointSNVMix / joint_snv_mix / file_formats / jemm.py View on Github external
p_AGT_ACG = Float64Col( pos=200 )
    p_AGT_ACT = Float64Col( pos=201 )
    p_AGT_AGT = Float64Col( pos=202 )
    p_AGT_CGT = Float64Col( pos=203 )
    p_AGT_ACGT = Float64Col( pos=204 )
    p_CGT_AA = Float64Col( pos=205 )
    p_CGT_AC = Float64Col( pos=206 )
    p_CGT_AG = Float64Col( pos=207 )
    p_CGT_AT = Float64Col( pos=208 )
    p_CGT_CC = Float64Col( pos=209 )
    p_CGT_CG = Float64Col( pos=210 )
    p_CGT_CT = Float64Col( pos=211 )
    p_CGT_GG = Float64Col( pos=212 )
    p_CGT_GT = Float64Col( pos=213 )
    p_CGT_TT = Float64Col( pos=214 )
    p_CGT_ACG = Float64Col( pos=215 )
    p_CGT_ACT = Float64Col( pos=216 )
    p_CGT_AGT = Float64Col( pos=217 )
    p_CGT_CGT = Float64Col( pos=218 )
    p_CGT_ACGT = Float64Col( pos=219 )
    p_ACGT_AA = Float64Col( pos=220 )
    p_ACGT_AC = Float64Col( pos=221 )
    p_ACGT_AG = Float64Col( pos=222 )
    p_ACGT_AT = Float64Col( pos=223 )
    p_ACGT_CC = Float64Col( pos=224 )
    p_ACGT_CG = Float64Col( pos=225 )
    p_ACGT_CT = Float64Col( pos=226 )
    p_ACGT_GG = Float64Col( pos=227 )
    p_ACGT_GT = Float64Col( pos=228 )
    p_ACGT_TT = Float64Col( pos=229 )
    p_ACGT_ACG = Float64Col( pos=230 )
    p_ACGT_ACT = Float64Col( pos=231 )
github HiSPARC / sapphire / scripts / kascade / read_sqldump / storage.py View on Github external
detnum = tables.UInt16Col()
    password = tables.Int32Col(dflt=-1)
    spare_bytes = tables.UInt8Col()
    use_filter = tables.BoolCol()
    use_filter_threshold = tables.BoolCol()
    reduce_data = tables.BoolCol()
    buffer = tables.Int32Col(dflt=-1)
    startmode = tables.BoolCol()
    delay_screen = tables.Float64Col()
    delay_check = tables.Float64Col()
    delay_error = tables.Float64Col()
    mas_ch1_thres_low = tables.Float64Col()
    mas_ch1_thres_high = tables.Float64Col()
    mas_ch2_thres_low = tables.Float64Col()
    mas_ch2_thres_high = tables.Float64Col()
    mas_ch1_inttime = tables.Float64Col()
    mas_ch2_inttime = tables.Float64Col()
    mas_ch1_voltage = tables.Float64Col()
    mas_ch2_voltage = tables.Float64Col()
    mas_ch1_current = tables.Float64Col()
    mas_ch2_current = tables.Float64Col()
    mas_comp_thres_low = tables.Float64Col()
    mas_comp_thres_high = tables.Float64Col()
    mas_max_voltage = tables.Float64Col()
    mas_reset = tables.BoolCol()
    mas_ch1_gain_pos = tables.UInt8Col()
    mas_ch1_gain_neg = tables.UInt8Col()
    mas_ch2_gain_pos = tables.UInt8Col()
    mas_ch2_gain_neg = tables.UInt8Col()
    mas_ch1_offset_pos = tables.UInt8Col()
    mas_ch1_offset_neg = tables.UInt8Col()
    mas_ch2_offset_pos = tables.UInt8Col()
github enigmampc / catalyst / zipline / utils / data_source_tables_gen.py View on Github external
import time
from six import print_

FORMAT = "%(asctime)-15s -8s %(message)s"

logging.basicConfig(format=FORMAT, level=logging.INFO)


class Usage(Exception):
    def __init__(self, msg):
        self.msg = msg


OHLCTableDescription = {'sid': tables.StringCol(14, pos=2),
                        'dt': tables.Int64Col(pos=1),
                        'open': tables.Float64Col(dflt=np.NaN, pos=3),
                        'high': tables.Float64Col(dflt=np.NaN, pos=4),
                        'low': tables.Float64Col(dflt=np.NaN, pos=5),
                        'close': tables.Float64Col(dflt=np.NaN, pos=6),
                        "volume": tables.Int64Col(dflt=0, pos=7)}


def process_line(line):
    dt = np.datetime64(line["dt"]).astype(np.int64)
    sid = line["sid"]
    open_p = float(line["open"])
    high_p = float(line["high"])
    low_p = float(line["low"])
    close_p = float(line["close"])
    volume = int(line["volume"])
    return (dt, sid, open_p, high_p, low_p, close_p, volume)