How to use the suod.models.jl_projection.jl_fit_transform function in suod

To help you get started, we’ve selected a few suod examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github yzhao062 / SUOD / examples / module_examples / M1_RP / demo_random_projection.py View on Github external
clf = LOF()  # change this to other detection algorithms
        clf.fit(X)
        y_train_scores = clf.decision_scores_
        original_time.append(time.time() - start)
        original_roc.append(roc_auc_score(y, y_train_scores))
        original_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "basic")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        basic_time.append(time.time() - start)
        basic_roc.append(roc_auc_score(y, y_train_scores))
        basic_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "discrete")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        discrete_time.append(time.time() - start)
        discrete_roc.append(roc_auc_score(y, y_train_scores))
        discrete_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "circulant")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        circulant_time.append(time.time() - start)
        circulant_roc.append(roc_auc_score(y, y_train_scores))
        circulant_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "toeplitz")
github yzhao062 / SUOD / examples / module_examples / M1_RP / demo_random_projection.py View on Github external
start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        discrete_time.append(time.time() - start)
        discrete_roc.append(roc_auc_score(y, y_train_scores))
        discrete_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "circulant")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        circulant_time.append(time.time() - start)
        circulant_roc.append(roc_auc_score(y, y_train_scores))
        circulant_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "toeplitz")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        toeplitz_time.append(time.time() - start)
        toeplitz_roc.append(roc_auc_score(y, y_train_scores))
        toeplitz_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed = PCA_sklearn(n_components=dim_new).fit_transform(X)
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        pca_time.append(time.time() - start)
        pca_roc.append(roc_auc_score(y, y_train_scores))
        pca_prn.append(precision_n_scores(y, y_train_scores))

        selected_features = generate_bagging_indices(random_state=j,
github yzhao062 / SUOD / examples / module_examples / M1_RP / demo_random_projection.py View on Github external
pca_time = []

    rp_roc = []
    rp_prn = []
    rp_time = []

    for j in range(n_iter):
        start = time.time()
        clf = LOF()  # change this to other detection algorithms
        clf.fit(X)
        y_train_scores = clf.decision_scores_
        original_time.append(time.time() - start)
        original_roc.append(roc_auc_score(y, y_train_scores))
        original_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "basic")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        basic_time.append(time.time() - start)
        basic_roc.append(roc_auc_score(y, y_train_scores))
        basic_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "discrete")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        discrete_time.append(time.time() - start)
        discrete_roc.append(roc_auc_score(y, y_train_scores))
        discrete_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "circulant")
github yzhao062 / SUOD / suod / models / parallel_processes.py View on Github external
def _parallel_fit(n_estimators, clfs, X, total_n_estimators,
                  rp_flags, objective_dim, rp_method, verbose):
    X = check_array(X)
    # Build estimators
    estimators = []
    rp_transformers = []
    for i in range(n_estimators):
        estimator = clone(clfs[i])
        if verbose > 1:
            print("Building estimator %d of %d for this parallel run "
                  "(total %d)..." % (i + 1, n_estimators, total_n_estimators))

        if rp_flags[i] == 1:
            X_scaled, jlt_transformer = jl_fit_transform(X, objective_dim,
                                                         rp_method)
            rp_transformers.append(jlt_transformer)

            estimator.fit(X_scaled)
            estimators.append(estimator)
        else:
            # if projection is not used, use an identity matrix to keep the shape
            rp_transformers.append(np.ones([X.shape[1], X.shape[1]]))
            estimator.fit(X)
            estimators.append(estimator)
    return estimators, rp_transformers
github yzhao062 / SUOD / examples / module_examples / M1_RP / demo_random_projection.py View on Github external
start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        basic_time.append(time.time() - start)
        basic_roc.append(roc_auc_score(y, y_train_scores))
        basic_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "discrete")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        discrete_time.append(time.time() - start)
        discrete_roc.append(roc_auc_score(y, y_train_scores))
        discrete_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "circulant")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        circulant_time.append(time.time() - start)
        circulant_roc.append(roc_auc_score(y, y_train_scores))
        circulant_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed, _ = jl_fit_transform(X, dim_new, "toeplitz")
        start = time.time()
        clf.fit(X_transformed)
        y_train_scores = clf.decision_scores_
        toeplitz_time.append(time.time() - start)
        toeplitz_roc.append(roc_auc_score(y, y_train_scores))
        toeplitz_prn.append(precision_n_scores(y, y_train_scores))

        X_transformed = PCA_sklearn(n_components=dim_new).fit_transform(X)