Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
tr = args.transform[0]
if tr in transformation_values:
transform_str = tr
if args.equalize[0] in true_values:
transform_str += '_eq'
else:
transform_str = "no_transform"
dfs_str = str(args.dfs[0])
clf = cfr.fit(X_train, y_train)
outdir_clf=filename_model_RF_tt.format(resol, transform_str, dfs_str)
if not os.path.exists(model_directory):
os.makedirs(model_directory)
print "Saving classifier...", outdir_clf
joblib.dump(clf, outdir_clf)
clf2 = cfr2.fit(X_train, y_train)
outdir_clf2=filename_model_SVC_tt.format(resol, transform_str, dfs_str)
print "Saving classifier...", outdir_clf2
joblib.dump(clf2, outdir_clf2)
print "RF, SVM: " + str( round(clf.score(X_test, y_test), 4) ) + " " + str( round(clf2.score(X_test, y_test), 4) )
iris_data = pd.read_csv(iris_data_filename).values
iris_target = pd.read_csv(iris_target_filename).values
# Convert one-column 2D array into 1D array for use with scikit-learn
iris_target = iris_target.reshape((iris_target.size,))
# [END load-into-pandas]
# [START train-and-save-model]
# Train the model
classifier = svm.SVC(gamma='auto', verbose=True)
classifier.fit(iris_data, iris_target)
# Export the classifier to a file
model_filename = 'model.joblib'
joblib.dump(classifier, model_filename)
# [END train-and-save-model]
# [START upload-model]
# Upload the saved model file to Cloud Storage
gcs_model_path = os.path.join('gs://', BUCKET_NAME,
datetime.datetime.now().strftime('iris_%Y%m%d_%H%M%S'), model_filename)
subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path],
stderr=sys.stdout)
# [END upload-model]
clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=3000, random_state=1, max_iter=200000)
# Training
clf.fit(x_train, y_train)
# Testing
y_pred = clf.predict(x_test)
# Confusion matrix
cm = confusion_matrix(y_test, y_pred)
# Accuracy
accuracy = clf.score(x_test, y_test)
# Saving the model
joblib.dump(clf, output_file_path)
print("\n-- Multi Layer Perceptron --")
print("Training completed")
print("Accuracy : " + str(accuracy))
print("Confusion Matrix :")
print(cm)
mid_dir_base = dsid_dir / self._wrapper_type
mid, mid_dir = setup_model(mid_dir_base, mid=self.mid, mode=self.mode)
ds = self.pipeline.data
n_components_opt = _compute_lsi_dimensionality(n_components, *ds.shape,
alpha=alpha)
svd = _TruncatedSVD_LSI(n_components=n_components_opt,
n_iter=n_iter, random_state=self.random_state)
lsi = svd
lsi.fit(ds)
ds_p = lsi.transform_lsi_norm(ds)
joblib.dump(pars, str(mid_dir / 'pars'))
joblib.dump(lsi, str(mid_dir / 'model'))
joblib.dump(ds_p, str(mid_dir / 'data'))
exp_var = lsi.explained_variance_ratio_.sum()
self.mid = mid
return lsi, exp_var
def trainReplays(xTrainData, yTrainData):
#
# Polynomial model with degree 1
#
clfPoly = svm.SVC(kernel='poly', degree=1) # Since input layer should be small
clfPoly.fit(xTrainData, yTrainData)
joblib.dump(clfPoly, 'clfPoly.pkl')
#
# Linear Model
#
clfLinear = svm.SVC(kernel='linear')
clfLinear.fit(xTrainData, yTrainData)
joblib.dump(clfLinear, 'clfLinear.pkl')
#
# Sigmoid Model
#
clfSigmoid = svm.SVC(kernel='sigmoid')
clfSigmoid.fit(xTrainData, yTrainData)
joblib.dump(clfSigmoid, 'clfSigmoid.pkl')
features_tfidf = pandas.DataFrame(tfidfX.todense())
# Assign column names to make it easier to print most useful features later
features_tfidf.columns = tfidf.get_feature_names()
features_combined = pandas.concat([features_tfidf, derived_features], axis=1)
logging.info('Combined features shape:')
logging.info(features_combined.shape)
svm_object = LinearSVC()
clf = CalibratedClassifierCV(svm_object)
classifier = balancer.OneVsRestClassifierBalance(clf)
logging.info('Training classifier')
classifier.fit(features_combined.values, labels_matrix)
logging.info('Saving TFIDF vectorizer')
joblib.dump(tfidf, vectorizer_filename)
logging.info('Saving binarizer')
joblib.dump(mlb, binarizer_filename)
logging.info('Saving model')
joblib.dump(classifier, model_filename)
end = time.time()
runtime_in_seconds = end - start
logging.info('Processing completed in {0}'.format(runtime_in_seconds))
except Error as e:
logging.exception(e)
except Exception as e:
logging.exception(e)
finally:
conn.close()
try:
from tflite_runtime.interpreter import Interpreter
except:
from tensorflow.lite.python.interpreter import Interpreter
model_path = "model/"
if os.path.exists(model_path):
# load csv
print("csv loading...")
channel_weight = np.loadtxt(model_path + "channel_weight.csv", delimiter=",")
channel_adress = np.loadtxt(model_path + "channel_adress.csv", delimiter=",", dtype="float")
channel_adress = channel_adress.astype(np.int)
vector_pa = np.loadtxt(model_path + "vector_pa.csv", delimiter=",")
kmeans = joblib.load(model_path + "k-means.pkl.cmp")
else:
print("Nothing model folder")
def get_score_arc(pa_vector, test):
# cosine similarity
cos_similarity = cosine_similarity(test, pa_vector)
return np.max(cos_similarity)
def cosine_similarity(x1, x2):
if x1.ndim == 1:
x1 = x1[np.newaxis]
if x2.ndim == 1:
x2 = x2[np.newaxis]
x1_norm = np.linalg.norm(x1, axis=1)
def load(self, filepath):
self.embedding_matrix = joblib.load(filepath)
return self
def persist(self, filepath):
joblib.dump(self.estimator, filepath)
def load_model(filename):
from sklearn.externals import joblib
estimator, X, y, sample_coords, groups = joblib.load(filename)
return (estimator, X, y, sample_coords, groups)