How to use the skl2onnx.proto.onnx_proto function in skl2onnx

To help you get started, we’ve selected a few skl2onnx examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github onnx / sklearn-onnx / tests / test_utils / View on Github external
def set_model_domain(model, domain):
    Sets the domain on the ONNX model.

    :param model: instance of an ONNX model
    :param domain: string containing the domain name of the model


        from test_utils import set_model_domain
        onnx_model = load_model("SqueezeNet.onnx")
        set_model_domain(onnx_model, "com.acme")
    if model is None or not isinstance(model, onnx_proto.ModelProto):
        raise ValueError("Parameter model is not an onnx model.")
    if not convert_utils.is_string_type(domain):
        raise ValueError("Parameter domain must be a string type.")
    model.domain = domain
github onnx / sklearn-onnx / skl2onnx / operator_converters / View on Github external
if container.target_opset < 9:
        op_type = 'Ngram'
        container.add_node(op_type, tokenized, output,
                           op_domain='', **attrs)
        op_type = 'TfIdfVectorizer'
        container.add_node(op_type, tokenized, output, op_domain='',
                           op_version=9, **attrs)
    if op.binary:
        cast_result_name = scope.get_unique_variable_name('cast_result')

        apply_cast(scope, output, cast_result_name, container,
        apply_cast(scope, cast_result_name, operator.output_full_names,
                   container, to=onnx_proto.TensorProto.FLOAT)
github onnx / sklearn-onnx / skl2onnx / operator_converters / View on Github external
def predict(model, scope, operator, container, op_type, is_ensemble=False):
    """Predict target and calculate probability scores."""
    indices_name = scope.get_unique_variable_name('indices')
    dummy_proba_name = scope.get_unique_variable_name('dummy_proba')
    values_name = scope.get_unique_variable_name('values')
    out_values_name = scope.get_unique_variable_name('out_indices')
    transposed_result_name = scope.get_unique_variable_name(
    proba_output_name = scope.get_unique_variable_name('proba_output')
    cast_result_name = scope.get_unique_variable_name('cast_result')
    value = model.tree_.value.transpose(1, 2, 0)
    attrs = populate_tree_attributes(
        model, scope.get_unique_operator_name(op_type))

        values_name, onnx_proto.TensorProto.FLOAT,
        value.shape, value.ravel())

        op_type, operator.input_full_names,
        [indices_name, dummy_proba_name],
        op_domain='', **attrs)
        [values_name, indices_name],
        out_values_name, op_domain='',
    apply_transpose(scope, out_values_name, proba_output_name,
                    container, perm=(0, 2, 1))
    apply_cast(scope, proba_output_name, cast_result_name,
               container, to=onnx_proto.TensorProto.BOOL)
    if is_ensemble:
github onnx / sklearn-onnx / skl2onnx / algebra / View on Github external
# domains
        domains = {}
        version = target_opset
        for n in container.nodes:
            domains[n.domain] = max(domains.get(n.domain, version),
                                    getattr(n, 'op_version', version))
        for i, (k, v) in enumerate(domains.items()):
            if i == 0 and len(onnx_model.opset_import) == 1:
                op_set = onnx_model.opset_import[0]
                op_set = onnx_model.opset_import.add()
            op_set.domain = k
            op_set.version = domains.get(k, version)

        # metadata
        onnx_model.ir_version = onnx_proto.IR_VERSION
        onnx_model.producer_name = utils.get_producer()
        onnx_model.producer_version = utils.get_producer_version()
        onnx_model.domain = utils.get_domain()
        onnx_model.model_version = utils.get_model_version()

        return onnx_model
github onnx / sklearn-onnx / skl2onnx / common / View on Github external
def _guess_type_proto(data_type, dims):
    # This could be moved to onnxconverter_common.
    if data_type == onnx_proto.TensorProto.FLOAT:
        return FloatTensorType(dims)
    elif data_type == onnx_proto.TensorProto.DOUBLE:
        return DoubleTensorType(dims)
    elif data_type == onnx_proto.TensorProto.STRING:
        return StringTensorType(dims)
    elif data_type == onnx_proto.TensorProto.INT64:
        return Int64TensorType(dims)
    elif data_type == onnx_proto.TensorProto.INT32:
        return Int32TensorType(dims)
    elif data_type == onnx_proto.TensorProto.BOOL:
        return BooleanTensorType(dims)
        raise NotImplementedError(
            "Unsupported data_type '{}'. You may raise an issue "
github onnx / sklearn-onnx / skl2onnx / operator_converters / View on Github external

        if isinstance(inp_type, (Int64TensorType, Int32TensorType)):
            attrs['cats_int64s'] = categories.astype(np.int64)
            attrs['cats_strings'] = np.array(
                [str(s).encode('utf-8') for s in categories])

        ohe_output = scope.get_unique_variable_name(name + 'out')

        if 'cats_int64s' in attrs:
            # Let's cast this input in int64.
            cast_feature = scope.get_unique_variable_name(name + 'cast')
            apply_cast(scope, name, cast_feature, container,
            name = cast_feature

        container.add_node('OneHotEncoder', name,
                           ohe_output, op_domain='',

        categories_len += len(categories)

    concat_result_name = scope.get_unique_variable_name('concat_result')
    apply_concat(scope, result, concat_result_name, container, axis=2)

    reshape_input = concat_result_name
    if np.issubdtype(ohe_op.dtype, np.signedinteger):
        reshape_input = scope.get_unique_variable_name('cast')
        apply_cast(scope, concat_result_name, reshape_input,
                   container, to=onnx_proto.TensorProto.INT64)