Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __get__(self, obj, type=None):
if obj is None:
return self
return 42
def meth(self):
"""Function."""
return "The Answer"
class CustomDataDescriptorMeta(type):
"""Descriptor metaclass docstring."""
@add_metaclass(CustomDataDescriptorMeta)
class CustomDataDescriptor2(CustomDataDescriptor):
"""Descriptor class with custom metaclass docstring."""
def _funky_classmethod(name, b, c, d, docstring=None):
"""Generates a classmethod for a class from a template by filling out
some arguments."""
def template(cls, a, b, c, d=4, e=5, f=6):
return a, b, c, d, e, f
from functools import partial
function = partial(template, b=b, c=c, d=d)
function.__name__ = name
function.__doc__ = docstring
return classmethod(function)
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library for testing the dataset wrappers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
from task_adaptation.data import base
import tensorflow as tf
@six.add_metaclass(abc.ABCMeta)
class BaseDataTest(tf.test.TestCase):
"""Base class for testing subclasses of base.ImageData.
To use this testing library, subclass BaseDataTest and override setUp().
Pass into BaseDataTest's setUp method the expected statistics for the
specific dataset being tested. These statistics are stored as instance
attributes to be used in the tests.
Attributes:
data_wrapper: Subclass of base.ImageData for testing.
default_label_key: str, key of the default output label tensor.
expected_num_classes: Dict with the expected number of classes for each
output label tensor.
expected_num_samples: Dict containing expected number of examples in the
"train", "val", "trainval", and "test" splits of the dataset.
required_tensors_shapes: Dictionary with the names of the tensors that
x = "x"
X = six.add_metaclass(Meta2)(X)
assert type(X) is Meta2
assert issubclass(X, Base)
assert type(Base) is Meta1
assert "__dict__" not in vars(X)
instance = X()
instance.attr = "test"
assert vars(instance) == {"attr": "test"}
assert instance.b == Base.b
assert instance.x == X.x
# Test a class with slots.
class MySlots(object):
__slots__ = ["a", "b"]
MySlots = six.add_metaclass(Meta1)(MySlots)
assert MySlots.__slots__ == ["a", "b"]
instance = MySlots()
instance.a = "foo"
py.test.raises(AttributeError, setattr, instance, "c", "baz")
# Test a class with string for slots.
class MyStringSlots(object):
__slots__ = "ab"
MyStringSlots = six.add_metaclass(Meta1)(MyStringSlots)
assert MyStringSlots.__slots__ == "ab"
instance = MyStringSlots()
instance.ab = "foo"
py.test.raises(AttributeError, setattr, instance, "a", "baz")
py.test.raises(AttributeError, setattr, instance, "b", "baz")
columns = lines[0].split(separator)
rows = lines[1:]
for row in rows:
obj = obj_type()
for item, column in zip(row.split(separator), columns):
mapping = mappings.get(column)
if mapping:
transformation_func = mapping.get("transformation")
value = item if transformation_func is None else transformation_func(item)
setattr(obj, mapping["field"], value)
results.append(obj)
return results
@add_metaclass(ABCMeta)
class ComparableObject:
def __eq__(self, other):
if type(other) is type(self):
return self.__dict__ == other.__dict__
return False
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
attrs = ", ".join(["{key}={value}".format(key=key, value=repr(value)) for key, value in self.__dict__.items()])
return "{class_name}({attrs})".format(class_name=self.__class__.__name__, attrs=attrs)
# json_ui_filter = json.dumps([ui_filter.to_dict() for ui_filter in filters_ui])
super(SurfaceViewerForm, self).__init__(prefix, project_id)
self.surface = DataTypeSelectField(self.get_required_datatype(), self, name='surface',
required=True, label='Brain surface')
@staticmethod
def get_required_datatype():
return SurfaceIndex
@staticmethod
def get_input_name():
return '_surface'
@add_metaclass(ABCMeta)
class ABCSurfaceDisplayer(ABCSpaceDisplayer):
def generate_region_boundaries(self, surface_gid, region_mapping_gid):
"""
Return the full region boundaries, including: vertices, normals and lines indices.
"""
boundary_vertices = []
boundary_lines = []
boundary_normals = []
surface_index = self.load_entity_by_gid(surface_gid)
rm_index = self.load_entity_by_gid(region_mapping_gid)
with h5.h5_file_for_index(rm_index) as rm_h5:
array_data = rm_h5.array_data[:]
def capture_objs(cls):
from six import add_metaclass
module = inspect.getmodule(cls)
name = cls.__name__
keeper_class = add_metaclass(ObjKeeper)(cls)
setattr(module, name, keeper_class)
cls = getattr(module, name)
return keeper_class.instances[cls]
"""
__author__ = 'Grzegorz Latuszek, Marcin Usielski, Michal Ernst'
__copyright__ = 'Copyright (C) 2018-2019, Nokia'
__email__ = 'grzegorz.latuszek@nokia.com, marcin.usielski@nokia.com, michal.ernst@nokia.com'
from abc import ABCMeta
from six import add_metaclass
from moler.connection_observer import ConnectionObserver
from moler.exceptions import NoCommandStringProvided
from moler.helpers import instance_id
@add_metaclass(ABCMeta)
class Command(ConnectionObserver):
def __init__(self, connection=None, runner=None):
"""
Create instance of Command class
:param connection: connection used to start CMD and receive its output
"""
super(Command, self).__init__(connection=connection, runner=runner)
self.command_string = None
self.cmd_name = Command.observer_name
def __str__(self):
cmd_str = self.command_string if self.command_string else ''
if cmd_str[-1] == '\n':
cmd_str = cmd_str[:-1] + r'<\n>'
return '{}("{}", id:{})'.format(self.__class__.__name__, cmd_str, instance_id(self))
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class KeyDerivationFunction(object):
@abc.abstractmethod
def derive(self, key_material):
"""
Deterministically generates and returns a new key based on the existing
key material.
"""
@abc.abstractmethod
def verify(self, key_material, expected_key):
"""
Checks whether the key generated by the key material matches the
def capture_objs(cls):
from six import add_metaclass
module = inspect.getmodule(cls)
name = cls.__name__
keeper_class = add_metaclass(ObjKeeper)(cls)
setattr(module, name, keeper_class)
cls = getattr(module, name)
return keeper_class.instances[cls]
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import abc
import six
from nova.objects import fields
@six.add_metaclass(abc.ABCMeta)
class MonitorBase(object):
"""Base class for all resource monitor plugins.
A monitor is responsible for adding a set of related metrics to
a `nova.objects.MonitorMetricList` object after the monitor has
performed some sampling or monitoring action.
"""
def __init__(self, compute_manager):
self.compute_manager = compute_manager
self.source = None
@abc.abstractmethod
def get_metric_names(self):
"""Get available metric names.