Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
else:
self.thaw_indices = self.thaw_indices + (iter,)
iter = iter + 1
self.current_frozen = -1
# The number of times that reminimization has occurred
# during an attempt to compute confidence limits. If
# that number equals self.estmethod.maxfits, cease all
# further attempt to reminimize.
self.refits = 0
# Set up an IterFit object, so that the user can select
# an iterative fitting option.
self._iterfit = IterFit(self.data, self.model, self.stat, self.method,
itermethod_opts)
NoNewAttributesAfterInit.__init__(self)
def __init__(self, ratios, stats, samples, lr, ppp, null, alt):
self.ratios = numpy.asarray(ratios)
self.stats = numpy.asarray(stats)
self.samples = numpy.asarray(samples)
self.lr = float(lr)
self.ppp = float(ppp)
self.null = float(null)
self.alt = float(alt)
NoNewAttributesAfterInit.__init__(self)
def __init__(self):
"""
Initialize a Histogram object. All 1D histogram plot
instances utilize Histogram, which provides a generic
interface to a backend.
Once an instance of Histogram is initialized no new
attributes of the class can be made. (To eliminate
the accidental creation of erroneous attributes)
"""
self.histo_prefs = self.histo_prefs.copy()
NoNewAttributesAfterInit.__init__(self)
def __init__(self, name, datasets):
self.name = name
if len(datasets) == 0:
raise DataErr('zerodatasimulfit', type(self).__name__)
self.datasets = tuple(datasets)
NoNewAttributesAfterInit.__init__(self)
def __init__(self, name, pars=()):
self.name = name
self.type = self.__class__.__name__.lower()
self.pars = tuple(pars)
self.is_discrete = False
NoNewAttributesAfterInit.__init__(self)
self.methodname = type(fit.method).__name__.lower()
self.itermethodname = fit._iterfit.itermethod_opts['name']
statname = type(fit.stat).__name__.lower()
if isinstance(fit.stat, Chi2) and not isinstance(fit.stat, LeastSq):
isSimulFit = isinstance(fit.data, DataSimulFit)
if isSimulFit:
is_error_set = [
d.staterror is not None for d in fit.data.datasets]
if all(is_error_set):
statname = 'chi2'
elif fit.data.staterror is not None:
statname = 'chi2'
self.statname = statname
self.datasets = None # To be filled by calling function
self.param_warnings = param_warnings
NoNewAttributesAfterInit.__init__(self)
def __init__(self):
"""
Initialize a Contour object. All 2D contour plot
instances utilize Contour, which provides a generic
interface to a backend.
Once an instance of Contour is initialized no new
attributes of the class can be made. (To eliminate
the accidental creation of erroneous attributes)
"""
self.contour_prefs = self.contour_prefs.copy()
NoNewAttributesAfterInit.__init__(self)
def __init__(self, data, model):
self.data = data
self.model = model
NoNewAttributesAfterInit.__init__(self)
return
def __init__(self, name, type, crval, crpix, cdelt,
crota=0.0, epoch=2000.0, equinox=2000.0):
self.name = name
self.type = type
self.crval = numpy.asarray(crval, dtype=float)
self.crpix = numpy.asarray(crpix, dtype=float)
self.cdelt = numpy.asarray(cdelt, dtype=float)
self.crota = crota
self.epoch = epoch
self.equinox = equinox
NoNewAttributesAfterInit.__init__(self)