Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_regular_score_types_2(self):
BooleanScore(True)
BooleanScore(False)
score = BooleanScore.compute(5, 5)
self.assertEqual(score.norm_score, 1)
score = BooleanScore.compute(4, 5)
self.assertEqual(score.norm_score, 0)
t = RangeTest([2, 3])
score.test = t
score.describe()
score.description = "Lorem Ipsum"
score.describe()
score = FloatScore(3.14)
obs = np.array([1.0, 2.0, 3.0])
pred = np.array([1.0, 2.0, 4.0])
score = FloatScore.compute_ssd(obs, pred)
self.assertEqual(score.score, 1.0)
RatioScore(1.2)
score = RatioScore.compute({'mean': 4., 'std': 1.}, {'value': 2.})
self.assertEqual(score.score, 0.5)
BooleanScore(False)
score = BooleanScore.compute(5,5)
self.assertEqual(score.sort_key,1)
score = BooleanScore.compute(4,5)
self.assertEqual(score.sort_key,0)
t = RangeTest([2,3])
score.test = t
score.describe()
score.description = "Lorem Ipsum"
score.describe()
score = FloatScore(3.14)
obs = np.array([1.0,2.0,3.0])
pred = np.array([1.0,2.0,4.0])
score = FloatScore.compute_ssd(obs,pred)
self.assertEqual(score.score,1.0)
RatioScore(1.2)
score = RatioScore.compute({'mean':4.,'std':1.},{'value':2.})
self.assertEqual(score.score,0.5)
score = PercentScore(42)
self.assertEqual(score.sort_key,0.42)
ZScore(0.7)
score = ZScore.compute({'mean':3.,'std':1.},{'value':2.})
self.assertEqual(score.score,-1.)
CohenDScore(-0.3)
score = CohenDScore.compute({'mean':3.,'std':1.},{'mean':2.,'std':1.})
self.assertTrue(-0.708 < score.score < -0.707)
from sciunit.tests import RangeTest
BooleanScore(True)
BooleanScore(False)
score = BooleanScore.compute(5,5)
self.assertEqual(score.sort_key,1)
score = BooleanScore.compute(4,5)
self.assertEqual(score.sort_key,0)
t = RangeTest([2,3])
score.test = t
score.describe()
score.description = "Lorem Ipsum"
score.describe()
score = FloatScore(3.14)
obs = np.array([1.0,2.0,3.0])
pred = np.array([1.0,2.0,4.0])
score = FloatScore.compute_ssd(obs,pred)
self.assertEqual(score.score,1.0)
RatioScore(1.2)
score = RatioScore.compute({'mean':4.,'std':1.},{'value':2.})
self.assertEqual(score.score,0.5)
score = PercentScore(42)
self.assertEqual(score.sort_key,0.42)
ZScore(0.7)
score = ZScore.compute({'mean':3.,'std':1.},{'value':2.})
self.assertEqual(score.score,-1.)
def compute_score(self, prediction1, prediction2):
"""Implementation of sciunit.Test.score_prediction."""
score = sciunit.scores.FloatScore(prediction1 - prediction2)
score.description = "Difference between model predictions"
return score
def compute_score(self, prediction1, prediction2):
"""Implementation of sciunit.Test.score_prediction."""
score = sciunit.scores.FloatScore(prediction1 - prediction2)
score.description = "Difference between model predictions"
return score
def compute_score(self, prediction1, prediction2):
"""Implementation of sciunit.Test.score_prediction."""
score = FloatScore(prediction1 - prediction2)
score.description = "Difference between model predictions"
return score
BooleanScore(False)
score = BooleanScore.compute(5, 5)
self.assertEqual(score.norm_score, 1)
score = BooleanScore.compute(4, 5)
self.assertEqual(score.norm_score, 0)
t = RangeTest([2, 3])
score.test = t
score.describe()
score.description = "Lorem Ipsum"
score.describe()
score = FloatScore(3.14)
obs = np.array([1.0, 2.0, 3.0])
pred = np.array([1.0, 2.0, 4.0])
score = FloatScore.compute_ssd(obs, pred)
self.assertEqual(score.score, 1.0)
RatioScore(1.2)
score = RatioScore.compute({'mean': 4., 'std': 1.}, {'value': 2.})
self.assertEqual(score.score, 0.5)