How to use the scikit-learn.sklearn.linear_model.sgd_fast.plain_sgd function in scikit-learn

To help you get started, we’ve selected a few scikit-learn examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github angadgill / Parallel-SGD / scikit-learn / sklearn / linear_model / stochastic_gradient.py View on Github external
self.average_intercept_ = np.atleast_1d(self.average_intercept_)
            self.standard_intercept_ = np.atleast_1d(self.standard_intercept_)
            self.t_ += n_iter * X.shape[0]

            if self.average <= self.t_ - 1.0:
                self.coef_ = self.average_coef_
                self.intercept_ = self.average_intercept_
            else:
                self.coef_ = self.standard_coef_
                self.intercept_ = self.standard_intercept_

        else:
            if self.n_jobs > 1:
                sgd_result = \
                    Parallel(n_jobs=self.n_jobs, backend='threading')(
                    delayed(plain_sgd)(self.coef_,
                              self.intercept_[0],
                              loss_function,
                              penalty_type,
                              alpha, C,
                              self.l1_ratio,
                              dataset,
                              n_iter/self.n_jobs,
                              int(self.fit_intercept),
                              int(self.verbose),
                              int(self.shuffle),
                              seed,
                              1.0, 1.0,
                              learning_rate_type,
                              self.eta0, self.power_t, self.t_,
                              intercept_decay) for _ in range(self.n_jobs))
github angadgill / Parallel-SGD / scikit-learn / sklearn / linear_model / stochastic_gradient.py View on Github external
dataset,
                              n_iter/self.n_jobs,
                              int(self.fit_intercept),
                              int(self.verbose),
                              int(self.shuffle),
                              seed,
                              1.0, 1.0,
                              learning_rate_type,
                              self.eta0, self.power_t, self.t_,
                              intercept_decay) for _ in range(self.n_jobs))

                self.coef_ = np.array([x[0] for x in sgd_result]).mean(axis=0)
                self.intercept_ = np.array([x[1] for x in sgd_result]).mean(axis=0)
            else:
                self.coef_, self.intercept_ = \
                    plain_sgd(self.coef_,
                              self.intercept_[0],
                              loss_function,
                              penalty_type,
                              alpha, C,
                              self.l1_ratio,
                              dataset,
                              n_iter,
                              int(self.fit_intercept),
                              int(self.verbose),
                              int(self.shuffle),
                              seed,
                              1.0, 1.0,
                              learning_rate_type,
                              self.eta0, self.power_t, self.t_,
                              intercept_decay)
github angadgill / Parallel-SGD / scikit-learn / sklearn / linear_model / stochastic_gradient.py View on Github external
y_i, coef, intercept, average_coef, average_intercept = \
        _prepare_fit_binary(est, y, i)
    assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0]
    dataset, intercept_decay = make_dataset(X, y_i, sample_weight)

    penalty_type = est._get_penalty_type(est.penalty)
    learning_rate_type = est._get_learning_rate_type(learning_rate)

    # XXX should have random_state_!
    random_state = check_random_state(est.random_state)
    # numpy mtrand expects a C long which is a signed 32 bit integer under
    # Windows
    seed = random_state.randint(0, np.iinfo(np.int32).max)

    if not est.average:
        return plain_sgd(coef, intercept, est.loss_function,
                         penalty_type, alpha, C, est.l1_ratio,
                         dataset, n_iter, int(est.fit_intercept),
                         int(est.verbose), int(est.shuffle), seed,
                         pos_weight, neg_weight,
                         learning_rate_type, est.eta0,
                         est.power_t, est.t_, intercept_decay)

    else:
        standard_coef, standard_intercept, average_coef, \
            average_intercept = average_sgd(coef, intercept, average_coef,
                                            average_intercept,
                                            est.loss_function, penalty_type,
                                            alpha, C, est.l1_ratio, dataset,
                                            n_iter, int(est.fit_intercept),
                                            int(est.verbose), int(est.shuffle),
                                            seed, pos_weight, neg_weight,