Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
import scattertext as st
df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
)
corpus = st.CorpusFromParsedDocuments(
df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))
html = st.produce_scattertext_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=0, pmi_threshold_coefficient=0,
width_in_pixels=1000, metadata=corpus.get_df()['speaker'],
transform=st.Scalers.dense_rank,
max_overlapping=3
from scattertext import SampleCorpora, produce_scattertext_explorer
from scattertext.CorpusFromPandas import CorpusFromPandas
from scattertext.WhitespaceNLP import whitespace_nlp
nlp = whitespace_nlp
convention_df = SampleCorpora.ConventionData2012.get_data()
corpus = CorpusFromPandas(convention_df,
category_col='party',
text_col='text',
nlp=nlp).build()
html = produce_scattertext_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=5,
width_in_pixels=1000,
metadata=convention_df['speaker'])
open('./demo_without_spacy.html', 'wb').write(html.encode('utf-8'))
print('Open ./demo_without_spacy.html in Chrome or Firefox.')
import numpy as np
import spacy
from sklearn.linear_model import LogisticRegression
from scattertext import SampleCorpora, produce_scattertext_explorer
from scattertext.CorpusFromPandas import CorpusFromPandas
from scattertext.Scalers import scale
nlp = spacy.load('en')
convention_df = SampleCorpora.ConventionData2012.get_data()
corpus = CorpusFromPandas(convention_df,
category_col='party',
text_col='text',
nlp=nlp).build()
term_freq_df = corpus.get_term_freq_df()
def zero_centered_scale(ar):
ar[ar > 0] = scale(ar[ar > 0])
ar[ar < 0] = -scale(-ar[ar < 0])
return (ar + 1) / 2.
frequencies_scaled = scale(np.log(term_freq_df.sum(axis=1).values))
scores = corpus.get_logreg_coefs('democrat',
def main():
nlp = spacy.load('en')
#nlp = whitespace_nlp_with_sentences
convention_df = SampleCorpora.ConventionData2012.get_data()
convention_df['parsed'] = convention_df.text.apply(nlp)
corpus = (CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parsed')
.build()
.get_unigram_corpus())
model = word2vec.Word2Vec(size=100,
alpha=0.025,
window=5,
min_count=5,
max_vocab_size=None,
sample=0,
seed=1,
workers=1,
min_alpha=0.0001,
sg=1,
import scattertext as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfTransformer
from scipy.sparse.linalg import svds
convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
corpus = (st.CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parse')
.build()
.get_stoplisted_unigram_corpus()
.remove_infrequent_words(minimum_term_count=3, term_ranker=st.OncePerDocFrequencyRanker))
embeddings = TfidfTransformer().fit_transform(corpus.get_term_doc_mat()).T
U, S, VT = svds(embeddings, k = 3, maxiter=20000, which='LM')
x_dim = 0; y_dim = 1
projection = pd.DataFrame({'term':corpus.get_terms(),
'x':U.T[x_dim],
'y':U.T[y_dim]}).set_index('term')
html = st.produce_pca_explorer(corpus,
category='democrat',
def main():
convention_df = SampleCorpora.ConventionData2012.get_data()
feat_builder = FeatsFromOnlyEmpath()
corpus = CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='text',
feats_from_spacy_doc=feat_builder).build()
html = produce_scattertext_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
width_in_pixels=1000,
metadata=convention_df['speaker'],
use_non_text_features=True,
use_full_doc=True,
topic_model_term_lists=feat_builder.get_top_model_term_lists())
open('./Convention-Visualization-Empath.html', 'wb').write(html.encode('utf-8'))
print('Open ./Convention-Visualization-Empath.html in Chrome or Firefox.')
import scattertext as st
convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
corpus = (st.CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parse')
.build().get_stoplisted_unigram_corpus())
html = st.produce_projection_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
metadata=convention_df.speaker,
color_func='''(function(d) {return d.s > 0.5 ? d3.interpolateRdYlBu(0.6) : d3.interpolateRdYlBu(0.4) })''',
center_label_over_points = True,
censor_points=True,
from scattertext import SampleCorpora, whitespace_nlp_with_sentences, produce_frequency_explorer
from scattertext.CorpusFromPandas import CorpusFromPandas
from scattertext.termscoring.ScaledFScore import ScaledFScorePresetsNeg1To1
convention_df = SampleCorpora.ConventionData2012.get_data()
corpus = CorpusFromPandas(convention_df,
category_col='party',
text_col='text',
nlp=whitespace_nlp_with_sentences).build().get_unigram_corpus()
html = produce_frequency_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=5,
width_in_pixels=1000,
term_scorer=ScaledFScorePresetsNeg1To1(
beta=1,
scaler_algo='normcdf'
),
grey_threshold=0,
y_axis_values=[-1, 0, 1],
from scattertext import SampleCorpora, RankDifference, dense_rank, PyTextRankPhrases, AssociationCompactor, \
produce_scattertext_explorer
from scattertext import CorpusFromParsedDocuments
import spacy
import numpy as np
import pytextrank
nlp = spacy.load('en')
convention_df = SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(nlp),
party=lambda df: df.party.apply({'democrat': 'Democratic', 'republican': 'Republican'}.get)
)
corpus = CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=PyTextRankPhrases()
).build(
).compact(
AssociationCompactor(2000, use_non_text_features=True)
)
print('Aggregate PyTextRank phrase scores')
term_category_scores = corpus.get_metadata_freq_df('')
import scattertext as st
import scattertext.categoryprojector.pairplot
convention_df = st.SampleCorpora.ConventionData2012.get_data()
corpus = st.CorpusFromPandas(
convention_df,
category_col='speaker',
text_col='text',
nlp=st.whitespace_nlp_with_sentences
).build().get_unigram_corpus()
html = scattertext.categoryprojector.pairplot.produce_pairplot(
corpus,
metadata=convention_df['party'] + ': ' + convention_df['speaker']
)
file_name = 'convention_pair_plot.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('./' + file_name)