How to use sagemaker - 10 common examples

To help you get started, we’ve selected a few sagemaker examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github aws / sagemaker-pytorch-container / test-toolkit / integration / sagemaker / test_distributed_operations.py View on Github external
def _test_dist_operations(sagemaker_session, image_uri, instance_type, dist_backend, train_instance_count=3):
    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=dist_operations_path,
                          role='SageMakerRole',
                          train_instance_count=train_instance_count,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=image_uri,
                          hyperparameters={'backend': dist_backend})

        pytorch.sagemaker_session.default_bucket()
        fake_input = pytorch.sagemaker_session.upload_data(path=dist_operations_path,
                                                           key_prefix='pytorch/distributed_operations')

        job_name = utils.unique_name_from_base('test-pytorch-dist-ops')
        pytorch.fit({'required_argument': fake_input}, job_name=job_name)
github aws / sagemaker-pytorch-container / test / integration / sagemaker / test_training_smdebug.py View on Github external
def test_training_smdebug(sagemaker_session, ecr_image, instance_type):
    hyperparameters = {'random_seed': True, 'num_steps': 50, 'smdebug_path': '/opt/ml/output/tensors', 'epochs': 1,
                       'data_dir': training_dir}

    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=smdebug_mnist_script,
                          role='SageMakerRole',
                          train_instance_count=1,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=ecr_image,
                          hyperparameters=hyperparameters)

        training_input = pytorch.sagemaker_session.upload_data(path=training_dir,
                                                               key_prefix='pytorch/mnist')
        job_name = utils.unique_name_from_base('test-pytorch-smdebug')

        pytorch.fit({'training': training_input}, job_name=job_name)
github aws / sagemaker-python-sdk / tests / integ / test_kmeans_efs_fsx.py View on Github external
file_system_type="FSxLustre",
            directory_path=FSX_DIR_PATH,
            num_records=NUM_RECORDS,
            feature_dim=FEATURE_DIM,
        )

        test_records = FileSystemRecordSet(
            file_system_id=file_system_fsx_id,
            file_system_type="FSxLustre",
            directory_path=FSX_DIR_PATH,
            num_records=NUM_RECORDS,
            feature_dim=FEATURE_DIM,
            channel="test",
        )

        job_name = unique_name_from_base("tune-kmeans-fsx")
        tuner.fit([train_records, test_records], job_name=job_name)
        tuner.wait()
        best_training_job = tuner.best_training_job()
        assert best_training_job
github aws / sagemaker-python-sdk / tests / integ / test_tf_script_mode.py View on Github external
entry_point=SCRIPT,
        role=ROLE,
        train_instance_count=2,
        train_instance_type=instance_type,
        sagemaker_session=sagemaker_session,
        py_version=tests.integ.PYTHON_VERSION,
        script_mode=True,
        framework_version=tf_full_version,
        distributions=PARAMETER_SERVER_DISTRIBUTION,
    )
    inputs = estimator.sagemaker_session.upload_data(
        path=os.path.join(MNIST_RESOURCE_PATH, "data"), key_prefix="scriptmode/distributed_mnist"
    )

    with tests.integ.timeout.timeout(minutes=tests.integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
        estimator.fit(inputs=inputs, job_name=unique_name_from_base("test-tf-sm-distributed"))
    assert_s3_files_exist(
        sagemaker_session,
        estimator.model_dir,
        ["graph.pbtxt", "model.ckpt-0.index", "model.ckpt-0.meta"],
    )
github aws / sagemaker-mxnet-container / test / integration / sagemaker / test_dgl.py View on Github external
def test_dgl_training(sagemaker_session, ecr_image, instance_type):

    dgl = MXNet(entry_point=DGL_SCRIPT_PATH,
                role='SageMakerRole',
                train_instance_count=1,
                train_instance_type=instance_type,
                sagemaker_session=sagemaker_session,
                image_name=ecr_image)

    with timeout(minutes=15):
        job_name = utils.unique_name_from_base('test-dgl-image')
        dgl.fit(job_name=job_name)
github aws / sagemaker-python-sdk / tests / integ / test_tuner.py View on Github external
tuner = HyperparameterTuner(
        estimator,
        objective_metric_name,
        hyperparameter_ranges,
        metric_definitions,
        max_jobs=2,
        max_parallel_jobs=2,
    )

    with timeout(minutes=TUNING_DEFAULT_TIMEOUT_MINUTES):
        inputs = estimator.sagemaker_session.upload_data(
            path=os.path.join(resource_path, "data"), key_prefix="scriptmode/mnist"
        )

        tuning_job_name = unique_name_from_base("tune-tf-script-mode", max_length=32)
        tuner.fit(inputs, job_name=tuning_job_name)

        print("Started hyperparameter tuning job with name: " + tuning_job_name)

        time.sleep(15)
        tuner.wait()
github aws / sagemaker-python-sdk / tests / unit / test_pca.py View on Github external
def test_call_fit(base_fit, sagemaker_session):
    pca = PCA(base_job_name="pca", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS)

    data = RecordSet(
        "s3://{}/{}".format(BUCKET_NAME, PREFIX),
        num_records=1,
        feature_dim=FEATURE_DIM,
        channel="train",
    )

    pca.fit(data, MINI_BATCH_SIZE)

    base_fit.assert_called_once()
    assert len(base_fit.call_args[0]) == 2
    assert base_fit.call_args[0][0] == data
    assert base_fit.call_args[0][1] == MINI_BATCH_SIZE
github aws / sagemaker-python-sdk / tests / unit / test_randomcutforest.py View on Github external
def test_model_image(sagemaker_session):
    randomcutforest = RandomCutForest(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS)
    data = RecordSet(
        "s3://{}/{}".format(BUCKET_NAME, PREFIX),
        num_records=1,
        feature_dim=FEATURE_DIM,
        channel="train",
    )
    randomcutforest.fit(data, MINI_BATCH_SIZE)

    model = randomcutforest.create_model()
    assert model.image == registry(REGION, "randomcutforest") + "/randomcutforest:1"
github aws / sagemaker-python-sdk / tests / unit / test_randomcutforest.py View on Github external
def test_predictor_type(sagemaker_session):
    randomcutforest = RandomCutForest(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS)
    data = RecordSet(
        "s3://{}/{}".format(BUCKET_NAME, PREFIX),
        num_records=1,
        feature_dim=FEATURE_DIM,
        channel="train",
    )
    randomcutforest.fit(data, MINI_BATCH_SIZE)
    model = randomcutforest.create_model()
    predictor = model.deploy(1, TRAIN_INSTANCE_TYPE)

    assert isinstance(predictor, RandomCutForestPredictor)
github aws / sagemaker-python-sdk / tests / unit / test_ntm.py View on Github external
def test_call_fit_none_mini_batch_size(sagemaker_session):
    ntm = NTM(base_job_name="ntm", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS)

    data = RecordSet(
        "s3://{}/{}".format(BUCKET_NAME, PREFIX),
        num_records=1,
        feature_dim=FEATURE_DIM,
        channel="train",
    )
    ntm.fit(data)