Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def kmer_dist_main(args):
global VERBOSE
VERBOSE = not args.quiet
nh.VERBOSE = VERBOSE
try:
ggplot = importr("ggplot2")
except:
sys.stderr.write(GG_LOAD_ERROR)
sys.exit()
files = nh.get_files_list(args.fast5_basedirs)
plot_kmer_dist(
files, args.corrected_group, args.basecall_subgroups,
args.read_mean, args.upstream_bases, args.downstream_bases,
args.num_kmer_threshold, args.num_reads, args.pdf_filename,
args.r_data_filename, args.dont_plot)
return
#print P_val
#print ratio_val
else:
fields[-1] = 'NA'
result_dict[fields[0]] = fields
else:
first_line = line.strip('\n').split('\t')
num_line += 1
##Filtering
stats = importr('stats')
All_p_adjust = stats.p_adjust(FloatVector(All_P_values), method = 'BH')
first_line.insert(-1,'Group_A_Mean_PDUI')
first_line.insert(-1,'Group_B_Mean_PDUI')
first_line.extend(['P_val','adjusted.P_val','Pass_Filter'])
output_write.writelines('\t'.join(first_line)+'\n')
for curr_event_id in result_dict:
mean_PDUI_group1 = 'NA'
mean_PDUI_group2 = 'NA'
curr_P_val = 'NA'
curr_FDR_val = 'NA'
Pass_filter = 'N'
curr_fields = result_dict[curr_event_id]
if curr_event_id in Selected_events_id:
sel_ind = Selected_events_id.index(curr_event_id)
curr_P_val = str(All_P_values[sel_ind])
curr_FDR_val = str(All_p_adjust[sel_ind])
def translate(self, ds):
url = ds.data_url().pop()
base = importr('base')
utils = importr('utils')
utils.download_file(url, destfile="data_source.RData")
base.load("data_source.RData")
cds = R('cds')
print(cds)
def __init__(self):
rxnsim = rpackages.importr('RxnSim')
gosemsim = rpackages.importr('GOSemSim')
model_data :
The trained model to add to Clipper.The type has to be rpy2.robjects.vectors.ListVector,
this is how python's rpy2 encapsulates any given R model.This model will be loaded
into the Clipper model container and provided as an argument to the
predict function each time it is called.
labels : list of str, optional
A set of strings annotating the model
num_containers : int, optional
The number of replicas of the model to create. More replicas can be
created later as well. Defaults to 1.
"""
# importing some R specific dependencies
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
base = importr('base')
input_type = "strings"
container_name = "clipper/r_python_container:{}".format(code_version)
with hide("warnings", "output", "running"):
fname = name.replace("/", "_")
rds_path = '/tmp/%s/%s.rds' % (fname, fname)
model_data_path = "/tmp/%s" % fname
try:
os.mkdir(model_data_path)
except OSError:
pass
base.saveRDS(model_data, rds_path)
vol = "{model_repo}/{name}/{version}".format(
model_repo=MODEL_REPO, name=name, version=version)
# All rights reserved.
"""Will do test to compare two sets of groups in the data.
Input will be an output file from createAS_CountTables.py
"""
import sys
import optparse
import pdb
import os
import random
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
grdevices = importr('grDevices')
from helperFunctions import updateDictOfLists
#import numpy as np
#import matplotlib.pyplot as plt
#import matplotlib.mlab as mlab
r = robjects.r
# Suppresses warnings
robjects.r["options"](warn=-1)
#############
# CONSTANTS #
#############
NA = "NA"
DEF_SIGN_CUTOFF = 0.05
DEF_THRESH = 10
def theoretical_distribution(_data_, _distr_, _para_):
Rbase = importr('base')
# Create the R density and probabilty distribution names.
ddistname = R.paste('d', _distr_, sep='')
pdistname = R.paste('p', _distr_, sep='')
# Calculate the minimum and maximum values for x.
xminleft = min([i[0] for i in _data_ if i[0] != 'NA'])
xminright = min([i[1] for i in _data_ if i[1] != 'NA'])
xmin = min(xminleft, xminright)
xmaxleft = max([i[0] for i in _data_ if i[0] != 'NA'])
xmaxright = max([i[1] for i in _data_ if i[1] != 'NA'])
xmax = max(xmaxleft, xmaxright)
xrange = xmax - xmin
xmin = xmin - 0.3 * xrange
vol. 30, no. 9, pp. 1617–1634, 2011.
Author: Jacob Reinhold (jacob.reinhold@jhu.edu)
Created on: May 21, 2018
"""
import os
import warnings
import ants
from rpy2.robjects.packages import importr
from intensity_normalization.utilities.io import split_filename
ROBEX = importr('robex')
def robex(img, out_mask, skull_stripped=False):
"""
perform skull-stripping on the registered image using the
ROBEX algorithm
Args:
img (str): path to image to skull strip
out_mask (str): path to output mask file
skull_stripped (bool): return the mask
AND the skull-stripped image [default = False]
Returns:
mask (ants.ANTsImage): mask/skull-stripped image
"""
# covariance dir
cov_dir = args.cov_dir
# output dir
out_dir = args.output_dir
# read list of genes
gene_info = pd.read_table(info_file)
# output name
output_name = args.output_name
# r interface
r_requirement()
rpy2.robjects.numpy2ri.activate()
importr("GBJ")
P = nend - nstart + 1
gene_ensg = gene_info["gene_ensg"].copy()
gene_id = gene_info["gene_ensg"].copy()
gene_name = gene_info["gene_ensg"].copy()
# read z-score file
logging.info("Read in z-score files")
# directory of z-score
os.chdir(single_mask_dir)
# search for files ending with .csv
fi = []
for file in sorted(os.listdir(single_mask_dir)):
def rpy2_plotter(anno, clusters, name):
"""Plot genes distribution in clusters using ggplot2 from R."""
pandas2ri.activate()
grdevices = importr('grDevices')
rprint = robjects.globalenv.get("print")
anno = anno.sort_values(by="n_ft", ascending=False)
anno = anno.head(n=10)
category = anno["category"].tolist()
clusters = clusters[clusters["category"].isin(category)]
clusters = pandas2ri.py2ri(clusters)
pp = ggplot2.ggplot(clusters) + ggplot2.aes_string(x="n_features") + ggplot2.geom_histogram(binwidth=1) + ggplot2.facet_wrap(robjects.Formula("~category"), ncol=5) + ggplot2.labs(x="Number of Features", y="Number of Clusters", title="Clusters distribution")
grdevices.pdf(file=name, width=11.692, height=8.267)
rprint(pp)
grdevices.dev_off()