Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self):
rospack = rospkg.RosPack()
pkgDir = rospack.get_path('rapp_testing_tools')
audioFile = path.join(pkgDir, 'test_data', 'deutera.wav')
self.msg = SpeechRecognitionSphinx(
language='el',
audio_source='headset',
words=[u'Δευτέρα'],
sentences=[u'Δευτέρα'],
grammar=[u'Δευτέρα'],
audiofile=audioFile)
self.svc = RappPlatformService(self.msg)
self.valid_words_found = [u'Δευτέρα']
def __init__(self):
rospack = rospkg.RosPack()
pkgDir = rospack.get_path('rapp_testing_tools')
imagepath = path.join(pkgDir, 'test_data','qr_samples', 'hardMediumQr.jpg')
self.msg = QrDetection(imageFilepath=imagepath)
self.svc = RappPlatformService(msg=self.msg)
self.valid_results = {
'qr_centers': [{'y': 543, 'x': 661}],
'qr_messages': ['This QR will be used to check the algorithmic robustness as it is quite small'],
'error': ''
}
def get_rosmsg_paths(types):
"""
Gets a list of ROS message paths as they exist on your system
Args:
types: A list of ROS Message types in the format package/Type
Return:
A list of ROS message types as a map of map[type] = path
"""
rospack = rospkg.RosPack()
found_pkgs = rosmsg.iterate_packages(rospack, '.msg')
rosmsg_type_path_map = {}
dir_map = {}
type_map = {}
# This associates a type with a package name.
for full_type in types:
package_name = full_type.split('/')[0]
print "Searching package %s ... " % package_name
base_type = full_type.split('/')[1]
type_map[base_type] = package_name
# This associates a package name with a msg path
for p, path in found_pkgs:
#print "Msg path for package %s found at %s" % (p, path)
def create_behaviors(self):
rospack = rospkg.RosPack()
curr_dir = rospack.get_path("edwin")
self.behaviors = pickle.load(open(curr_dir+'/params/'+str(self.personality)+'_behaviors.txt'))
self.cat_behaviors['negative_emotions'] = ['angry', 'sad']
self.cat_behaviors['happy_emotions'] = ['nod', 'butt_wiggle']
self.cat_behaviors['greeting'] = ['greet', 'nudge', 'curiosity']
self.cat_behaviors['pretentious'] = ['gloat']
self.cat_behaviors['calm'] = ['sleep', 'nudge', 'nod']
self.pat = False
self.slap = False
self.exit = False #should be catch all to exit all long running commands
self.start_game = None
import cv2
import numpy as np
import rospkg
from primesense import openni2#, nite2
from primesense import _openni2 as c_api
import config as cf
import time
rospack = rospkg.RosPack()
path = rospack.get_path('r4f')
openni2.initialize(path+'/src/modules') #
dev = openni2.Device.open_any()
rgb_stream = dev.create_color_stream()
rgb_stream.set_video_mode(c_api.OniVideoMode(pixelFormat=c_api.OniPixelFormat.ONI_PIXEL_FORMAT_RGB888, resolutionX=640, resolutionY=480, fps=30))
rgb_stream.start()
depth_stream = dev.create_depth_stream()
depth_stream.set_video_mode(c_api.OniVideoMode(pixelFormat = c_api.OniPixelFormat.ONI_PIXEL_FORMAT_DEPTH_100_UM, resolutionX = 320, resolutionY = 240, fps = 30))
depth_stream.start()
def get_rgb():
print("Get_rbg started!")
while cf.running:
bgr = np.fromstring(rgb_stream.read_frame().get_buffer_as_uint8(),dtype=np.uint8).reshape(480,640,3)
rgb = cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
rgb = cv2.resize(rgb,(480, 320))
def getPaths():
global location_collect
global location_send
global location_calibrate
global location_safety_node
rospack = rospkg.RosPack()
# Define location of launch files
if sim_enabled == True:
location_collect = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/collect_goals_sim.launch"
location_send = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/send_goals_continuous_sim.launch"
location_calibrate = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/heading_calibration_sim.launch"
location_safety_node = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/safety_node.launch"
elif sim_enabled == False:
location_collect = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/collect_goals.launch"
location_send = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/send_goals_continuous.launch"
location_calibrate = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/heading_calibration.launch"
location_safety_node = rospack.get_path('outdoor_waypoint_nav') + "/launch/include/safety_node.launch"
else:
print("ERROR: PLEASE SPECIFY SIM_ENABLED PARAMETER.")
def _write_zero_point_data_to_file(self, filename, data):
rospack = rospkg.RosPack()
reflex_usb_path = rospack.get_path("reflex")
yaml_path = "yaml"
file_path = join(reflex_usb_path, yaml_path, filename)
with open(file_path, "w") as outfile:
outfile.write(yaml.dump(data))
def cfg_callback(self, config, level):
package_path = rospkg.RosPack().get_path('recognition')
self.face_detector_path = package_path + config.face_detector_path # the path to the face detector model file
self.confidence_thresh = config.confidence_thresh # the threshold for confidence of face detection
self.roi_width = config.roi_width_ # the width of a face detection ROI in the world space [m]
self.calc_roi_from_top = config.calc_roi_from_top # if true, ROIs are calculated from the top positions of detected clusters
self.head_offset_z_top = config.head_offset_z_top # the distance between the top position of a human cluster and the center of the face [m]
self.head_offset_z_centroid = config.head_offset_z_centroid # the distance between the centroid of a human cluster and the center of the face [m]
self.upscale_minsize = config.upscale_minsize # the face detection ROI is upscaled so that its width get larger than #upscale_minsize
self.visualization = config.visualization # if true, the visualization of the detection will be shown
print '--- cfg_callback ---'
print 'confidence_thresh', config.confidence_thresh
print 'roi_width', config.roi_width_
print 'calc_roi_from_top', config.calc_roi_from_top
print 'head_offset_z_top', config.head_offset_z_top
print 'head_offset_z_centroid', config.head_offset_z_centroid
print 'upscale_minsize', config.upscale_minsize
def __init__(self):
self.rospack = RosPack()
with open(join(self.rospack.get_path('apex_playground'), 'config', 'bounds.json')) as f:
self.bounds = json.load(f)
with open(join(self.rospack.get_path('apex_playground'), 'config', 'general.json')) as f:
self.params = json.load(f)
self.bounds_motors_min = np.array([float(bound[0]) for bound in self.bounds['motors']['positions']])
self.bounds_motors_max = np.array([float(bound[1]) for bound in self.bounds['motors']['positions']])
self.bounds_sensory_min = [d for space in ['hand', 'joystick_1', 'joystick_2', 'ergo', 'ball', 'light', 'sound', "hand_right", "base", "arena", "obj1", "obj2", "obj3", "rdm1", "rdm2"] for d in [float(bound[0])for bound in self.bounds['sensory'][space]]*10]
self.bounds_sensory_min = np.array([float(self.bounds['sensory']['ergo'][0][0]), float(self.bounds['sensory']['ball'][0][0])] + self.bounds_sensory_min)
self.bounds_sensory_max = [d for space in ['hand', 'joystick_1', 'joystick_2', 'ergo', 'ball', 'light', 'sound', "hand_right", "base", "arena", "obj1", "obj2", "obj3", "rdm1", "rdm2"] for d in [float(bound[1])for bound in self.bounds['sensory'][space]]*10]
self.bounds_sensory_max = np.array([float(self.bounds['sensory']['ergo'][0][1]), float(self.bounds['sensory']['ball'][0][1])] + self.bounds_sensory_max)
self.bounds_sensory_diff = self.bounds_sensory_max - self.bounds_sensory_min
# DMP PARAMETERS
self.n_dmps = 4
self.n_bfs = 7
self.timesteps = 30