Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'type': 'str',
'default': 'categoircal_fuzzy',
'description': 'Type of transformer to use for the categorical variables',
'choices': [
'categorical',
'categorical_fuzzy',
'one_hot_encoding',
'label_encoding'
]
}
}
DEFAULT_TRANSFORMER = 'one_hot_encoding'
CATEGORICAL_TRANSFORMERS = {
'categorical': rdt.transformers.CategoricalTransformer(fuzzy=False),
'categorical_fuzzy': rdt.transformers.CategoricalTransformer(fuzzy=True),
'one_hot_encoding': rdt.transformers.OneHotEncodingTransformer,
'label_encoding': rdt.transformers.LabelEncodingTransformer,
}
TRANSFORMER_TEMPLATES = {
'O': rdt.transformers.OneHotEncodingTransformer
}
def __init__(self, distribution=None, categorical_transformer=None, *args, **kwargs):
super().__init__(*args, **kwargs)
if self._metadata is not None and 'model_kwargs' in self._metadata._metadata:
model_kwargs = self._metadata._metadata['model_kwargs']
if distribution is None:
distribution = model_kwargs['distribution']
if categorical_transformer is None:
categorical_transformer = model_kwargs['categorical_transformer']