How to use the ray.tune.sample_from function in ray

To help you get started, we’ve selected a few ray examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github flow-project / flow / tests / slow_tests / test_sac.py View on Github external
'hidden_layer_sizes': (256, 256),
            'squash': True,
        }
    },

    sampler_params={
        'type': 'SimpleSampler',
        'kwargs': {
            'max_path_length': HORIZON,
            'min_pool_size': HORIZON,
            'batch_size': 256,
        }
    },

    run_params={
        'seed': tune.sample_from(
            lambda spec: np.random.randint(0, 10000)),
        'checkpoint_at_end': True,
        'checkpoint_frequency': HORIZON // N_CHECKPOINTS,
        'checkpoint_replay_pool': False,
    },

    resources_per_trial={
        'cpu': N_CPUS,
        'gpu': N_GPUS,
        'extra_cpu': 0,
        'extra_gpu': 0,
    }
)


class TestSoftActorCritic(unittest.TestCase):
github HazyResearch / learning-circuits / learning_transforms / old / learning_fft_old.py View on Github external
args = parser.parse_args(argv)
    experiment = RayExperiment(
        name=f'Fft_factorization_softmax_{args.size}',
        run=TrainableFftFactorSoftmax,
        local_dir=args.result_dir,
        num_samples=args.ntrials,
        checkpoint_at_end=True,
        resources_per_trial={'cpu': args.nthreads, 'gpu': 0},
        stop={
            'training_iteration': 1 if args.smoke_test else 99999,
            'is_nan': True,
            'negative_loss': -1e-8
        },
        config={
            'size': args.size,
            'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
            'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
            'semantic_loss_weight': sample_from(lambda spec: math.exp(random.uniform(math.log(5e-4), math.log(5e-1)))),
            'n_steps_per_epoch': args.nsteps,
        },
    )
    return experiment, args
github HazyResearch / learning-circuits / learning_transforms / learning_legendre.py View on Github external
def legendreeval_experiment_complex(fixed_order, softmax_fn, size, ntrials, nsteps, result_dir, nthreads, smoke_test):
    assert softmax_fn in ['softmax', 'sparsemax']
    config={
        'fixed_order': fixed_order,
        'softmax_fn': softmax_fn,
        'size': size,
        'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
        'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
        'perm': sample_from(lambda spec: random.choice(['id', 'br', 'dct'])),
        'n_steps_per_epoch': nsteps,
     }
    if (not fixed_order) and softmax_fn == 'softmax':
        config['semantic_loss_weight'] = sample_from(lambda spec: math.exp(random.uniform(math.log(5e-3), math.log(5e-1))))
    experiment = RayExperiment(
        name=f'LegendreEval_factorization_complex_{fixed_order}_{softmax_fn}_{size}',
        run=TrainableLegendreComplex,
        local_dir=result_dir,
        num_samples=ntrials,
        checkpoint_at_end=True,
        resources_per_trial={'cpu': nthreads, 'gpu': 0},
        stop={
            'training_iteration': 1 if smoke_test else 99999,
            'negative_loss': -1e-8
github HazyResearch / learning-circuits / learning_transforms / learning_fft.py View on Github external
def fft_experiment_learn_perm(fixed_order, softmax_fn, size, ntrials, nsteps, result_dir, nthreads, smoke_test):
    assert softmax_fn in ['softmax', 'sparsemax']
    config={
        'fixed_order': fixed_order,
        'softmax_fn': softmax_fn,
        'size': size,
        'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
        'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
        'n_steps_per_epoch': nsteps,
     }
    if (not fixed_order) and softmax_fn == 'softmax':
        config['semantic_loss_weight'] = sample_from(lambda spec: math.exp(random.uniform(math.log(5e-3), math.log(5e-1))))
    experiment = RayExperiment(
        name=f'Fft_factorization_Learnperm_{fixed_order}_{softmax_fn}_{size}',
        run=TrainableFftLearnPerm,
        local_dir=result_dir,
        num_samples=ntrials,
        checkpoint_at_end=True,
        resources_per_trial={'cpu': nthreads, 'gpu': 0},
        stop={
            'training_iteration': 1 if smoke_test else 99999,
            # 'negative_loss': -1e-8
        },
        config=config,
    )
    return experiment
github dcgym / iroko / run_ray.py View on Github external
# "kl_target": random.uniform(0.003, 0.03),
            # "kl_coeff": random.uniform(0.3, 1),
            # "use_gae": random.choice([True, False]),
            # "gamma": random.choice([0.99,
            #                        random.uniform(0.8, 0.9997),
            #                        random.uniform(0.8, 0.9997)]),
            # "lambda": random.uniform(0.9, 1.0),

            # val fn & entropy coeff
            # "vf_loss_coeff": random.choice([0.5, 1.0]),
            # "entropy_coeff": random.uniform(0, 0.01),
            # "lr": random.uniform(5e-6, 0.003),
        }
        # creates a wide range of the potential population
        for k in hyper_params.keys():
            config[k] = tune.sample_from(lambda spec: hyper_params[k])
        scheduler = PopulationBasedTraining(time_attr="time_total_s",
                                            reward_attr="episode_reward_mean",
                                            perturbation_interval=120,
                                            resample_probability=0.80,
                                            hyperparam_mutations=hyper_params,
                                            custom_explore_fn=explore)

    if agent.lower() == "ddpg":
        pass

    if agent.lower() == "pg":
        pass

    return config, scheduler
github MSiam / AdaptiveMaskedProxies / hyperparam_search_ft.py View on Github external
tune.run_experiments(
                {
                    "exp": {
                        "stop": {
                            "training_iteration": 200
                        },
                        "resources_per_trial": {
                            "cpu": 3,
                            "gpu": 1
                        },
                        "run": "validate",
                        "num_samples": args.n_samples,
                        "config": {
                            "alpha": tune.sample_from(
                                lambda spec: np.random.uniform(0.1, 0.6)),
                            "lr": tune.sample_from(
                                lambda spec: np.random.uniform(1e-6, 1e-3)),
                            "niters": tune.sample_from(
                                lambda spec: np.random.randint(1, 10))
                        }
                    }
                },
                verbose=1,
                scheduler=sched)
github HazyResearch / learning-circuits / learning_transforms / old / learning_fft_old.py View on Github external
args = parser.parse_args(argv)
    experiment = RayExperiment(
        name=f'Randn_factorization_softmax_no_perm_{args.size}',
        run=TrainableRandnFactorSoftmaxNoPerm,
        local_dir=args.result_dir,
        num_samples=args.ntrials,
        checkpoint_at_end=True,
        resources_per_trial={'cpu': args.nthreads, 'gpu': 0},
        stop={
            'training_iteration': 1 if args.smoke_test else 99999,
            'negative_loss': -1e-8
        },
        config={
            'size': args.size,
            'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
            'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
            'n_steps_per_epoch': args.nsteps,
        },
    )
    return experiment, args
github HumanCompatibleAI / adversarial-policies / src / aprl / configs / multi / score.py View on Github external
def save_activations(score):
        score = dict(score)
        score["episodes"] = None
        # Trajectory length varies a lot between environments and opponents; make sure we have
        # a consistent number of data points.
        score["timesteps"] = 20000
        score["record_traj"] = True
        score["transparent_params"] = {"ff_policy": True, "ff_value": True}
        score["record_traj_params"] = {
            "save_dir": "data/trajectories",
        }
        spec = {  # noqa: F841
            "config": {
                "record_traj_params": {
                    "agent_indices": tune.sample_from(
                        lambda spec: VICTIM_INDEX[spec.config[PATHS_AND_TYPES][0]]
                    ),
                }
            }
        }
        exp_prefix = {"activations": None}  # noqa: F841
github HazyResearch / learning-circuits / learning_transforms / learning_fft.py View on Github external
def fft_experiment_block(trainable, size, ntrials, nsteps, nepochsvalid, result_dir, nthreads, smoke_test):
    config={
        'target_matrix': named_target_matrix('dft', size),
        'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
        'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
        'n_steps_per_epoch': nsteps,
        'n_epochs_per_validation': nepochsvalid,
        'complex': True,
     }
    experiment = RayExperiment(
        name=f'Fft_factorization_{trainable.__name__}_{size}',
        run=trainable,
        local_dir=result_dir,
        num_samples=ntrials,
        checkpoint_at_end=True,
        resources_per_trial={'cpu': nthreads, 'gpu': 0},
        stop={
            'training_iteration': 1 if smoke_test else 99999,
            'negative_loss': -1e-8
        },
        config=config,