Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
abs(setpoints[1][0, -1] - setpoints[1][0, 0])]
samprates = [im.shape[0] // mVrange[0], im.shape[1] // mVrange[1]]
factor = int(max(samprates) // min(samprates))
if factor >= 2:
axis = int(samprates[0] - samprates[1] < 0)
if axis == 0:
facrem = im.shape[0] % factor
if facrem > 0:
im = im[:-facrem, :]
facrem = facrem + 1
im = im.reshape(im.shape[0] // factor, factor, im.shape[1]).mean(1)
spy = np.linspace(setpoints[0][0], setpoints[
0][-facrem], im.shape[0])
spx = np.tile(np.expand_dims(np.linspace(
setpoints[1][0, 0], setpoints[1][0, -1], im.shape[1]), 0), im.shape[0])
setpointy = DataArray(name='Resampled_' + setpoints[0].array_id,
array_id='Resampled_' + setpoints[0].array_id, label=setpoints[0].label,
unit=setpoints[0].unit, preset_data=spy, is_setpoint=True)
setpointx = DataArray(name='Resampled_' + setpoints[1].array_id,
array_id='Resampled_' + setpoints[1].array_id, label=setpoints[1].label,
unit=setpoints[1].unit, preset_data=spx, is_setpoint=True)
setpoints = [setpointy, setpointx]
else:
facrem = im.shape[1] % factor
if facrem > 0:
im = im[:, :-facrem]
facrem = facrem + 1
im = im.reshape(im.shape[0], im.shape[1] //
factor, factor).mean(-1)
spx = np.tile(np.expand_dims(np.linspace(setpoints[1][0, 0], setpoints[
1][0, -facrem], im.shape[1]), 0), [im.shape[0], 1])
idx = setpoints[1].array_id
if update_plot:
if liveplotwindow:
myupdate()
pyqtgraph.mkQApp().processEvents() # needed for the parameterviewer
if qtt.abort_measurements():
print(' aborting measurement loop')
break
myupdate()
dt = time.time() - t0
if scanjob['scantype'] == 'scan1Dvec':
for param in scanjob['phys_gates_vals']:
parameter = station.gates.parameters[param]
arr = DataArray(name=parameter.name, array_id=parameter.name, label=parameter.label, unit=parameter.unit,
preset_data=scanjob['phys_gates_vals'][param],
set_arrays=(alldata.arrays[sweepvalues.parameter.name],))
alldata.add_array(arr)
if not hasattr(alldata, 'metadata'):
alldata.metadata = dict()
if extra_metadata is not None:
update_dictionary(alldata.metadata, **extra_metadata)
update_dictionary(alldata.metadata, scanjob=dict(scanjob),
dt=dt, station=station.snapshot())
if 'gates' in station.components:
gates = station.gates
gatevals = gates.allvalues()
passed to it as `record`.
Raises:
See _make_data_set for the ValueError and TypeError exceptions that can be raised
Returns:
The resulting dataset.
"""
setpoint_datay = np.array(y)
setpoint_datax = np.array(x)
setpoint_dataxy = np.tile(setpoint_datax, [setpoint_datay.size, 1])
preset_data = np.NaN * np.ones((setpoint_datay.size, setpoint_datax.size))
setpointy = DataArray(name=yname, array_id=yname, preset_data=setpoint_datay,
unit=yunit, is_setpoint=True)
setpointx = DataArray(name=xname, array_id=xname, preset_data=setpoint_dataxy,
unit=xunit, set_arrays=(setpointy,), is_setpoint=True)
if isinstance(zname, (str, qcodes.Parameter)):
if isinstance(z, np.ndarray):
measured_data_list = [z]
else:
measured_data_list = z
measurement_list = [zname]
else:
measured_data_list = z
measurement_list = zname
measurement_unit = zunit
data_set, _ = _make_data_set(measured_data_list, measurement_list, measurement_unit, location, loc_record,
preset_data, [setpointy, setpointx])
False: The resulting dataset.
"""
_check_parameter(p1)
_check_parameter(p2)
y = p1
x = p2
z = preset_data
setpoint_datay = np.array(y)
setpoint_datax = np.array(x)
setpoint_dataxy = np.tile(setpoint_datax, [setpoint_datay.size, 1])
preset_data = np.NaN * np.ones((setpoint_datay.size, setpoint_datax.size))
setpointy = DataArray(name=y.name, array_id=y.name, preset_data=setpoint_datay,
unit=y.parameter.unit, is_setpoint=True)
setpointx = DataArray(name=x.name, array_id=x.name, preset_data=setpoint_dataxy,
unit=x.parameter.unit, set_arrays=(setpointy,), is_setpoint=True)
if isinstance(measure_names, (str, qcodes.Parameter)):
measured_data_list = [z]
measurement_list = [measure_names]
else:
measured_data_list = z
measurement_list = measure_names
measurement_unit = None
data_set, measure_names = _make_data_set(measured_data_list, measurement_list, measurement_unit, location,
loc_record, preset_data, [setpointy, setpointx])
data_set.last_write = -1
Depending on parameter return_names:
True: The resulting dataset and a tuple with the names of the added arrays (setpoint and measurements).
False: The resulting dataset.
"""
_check_parameter(p1)
_check_parameter(p2)
y = p1
x = p2
z = preset_data
setpoint_datay = np.array(y)
setpoint_datax = np.array(x)
setpoint_dataxy = np.tile(setpoint_datax, [setpoint_datay.size, 1])
preset_data = np.NaN * np.ones((setpoint_datay.size, setpoint_datax.size))
setpointy = DataArray(name=y.name, array_id=y.name, preset_data=setpoint_datay,
unit=y.parameter.unit, is_setpoint=True)
setpointx = DataArray(name=x.name, array_id=x.name, preset_data=setpoint_dataxy,
unit=x.parameter.unit, set_arrays=(setpointy,), is_setpoint=True)
if isinstance(measure_names, (str, qcodes.Parameter)):
measured_data_list = [z]
measurement_list = [measure_names]
else:
measured_data_list = z
measurement_list = measure_names
measurement_unit = None
data_set, measure_names = _make_data_set(measured_data_list, measurement_list, measurement_unit, location,
loc_record, preset_data, [setpointy, setpointx])
input_array_name: Name of the data array to be processed
output_array_nane: Name of the output array or None to operate in place
processing_function: Method to apply to the data array
label: Label for the output array
unit: Unit for the output array
"""
array = dataset.default_parameter_array(input_array_name)
data = processing_function(np.array(array))
if label is None:
label = array.label
if unit is None:
unit = array.unit
if output_array_name is None:
array.ndarray[:] = data
else:
data_array = DataArray(array_id=output_array_name, name=output_array_name, label=label,
set_arrays=array.set_arrays, preset_data=data, unit=unit)
dataset.add_array(data_array)
return dataset
measure_names = []
measure_units = []
for parameter in measurement_list:
if isinstance(parameter, str):
# parameter is a str
measure_names += [parameter]
measure_units += [measurement_unit]
elif isinstance(parameter, qcodes.Parameter):
# parameter is a Parameter
measure_names += [parameter.name]
measure_units += [parameter.unit]
else:
raise TypeError('Type of measurement names must be str or qcodes.Parameter')
for idm, mname in enumerate(measure_names):
preset_data_array = DataArray(name=mname, array_id=mname, label=mname, unit=measure_units[idm],
preset_data=np.copy(preset_data), set_arrays=set_arrays)
data_set.add_array(preset_data_array)
if measured_data_list is not None and measured_data_list[idm] is not None:
measured_array = np.array(measured_data_list[idm])
if measured_array.shape != preset_data.shape:
logger.warning(f'Shape of measured data {preset_data.shape} does not match '
f'setpoint shape {measured_array.shape}')
getattr(data_set, mname).ndarray = measured_array
if len(setpoints) > 1:
data_set.add_array(setpoints[1])
data_set.add_array(setpoints[0])
else:
data_set.add_array(setpoints[0])
- `False` - denotes an only-in-memory temporary DataSet.
loc_record (dict or None): If location is a callable, this will be
passed to it as `record`.
Raises:
See _make_data_set for the ValueError and TypeError exceptions that can be raised
Returns:
The resulting dataset.
"""
setpoint_data = np.array(x)
preset_data = np.NaN * np.ones(setpoint_data.size)
if y is not None:
y = np.array(y)
setpoint = DataArray(name=xname, array_id=xname, preset_data=setpoint_data, unit=xunit, is_setpoint=True)
if isinstance(yname, (str, qcodes.Parameter)):
measured_data_list = [y]
measurement_list = [yname]
else:
measured_data_list = y
measurement_list = yname
measurement_unit = yunit
data_set, _ = _make_data_set(measured_data_list, measurement_list, measurement_unit, location, loc_record,
preset_data, [setpoint])
return data_set
Raises:
See _make_data_set for the ValueError and TypeError exceptions that can be raised
See _check_parameter for the TypeError exceptions that can be raised
Returns:
Depending on parameter return_names
True: The resulting dataset and a tuple with the names of the added arrays (setpoint and measurements).
False: The resulting dataset.
"""
_check_parameter(p)
setpoint_data = np.array(p)
preset_data = np.NaN * np.ones(setpoint_data.size)
setpoint = DataArray(name=p.name, array_id=p.name, label=p.parameter.label,
unit=p.parameter.unit, preset_data=setpoint_data, is_setpoint=True)
if isinstance(yname, (str, qcodes.Parameter)):
measured_data_list = [y]
measurement_list = [yname]
else:
measured_data_list = y
measurement_list = yname
measurement_unit = None
data_set, measure_names = _make_data_set(measured_data_list, measurement_list, measurement_unit, location,
loc_record, preset_data, [setpoint])
data_set.metadata['default_parameter_name'] = measure_names[0]
if return_names:
- `False` - denotes an only-in-memory temporary DataSet.
loc_record (dict or None): If location is a callable, this will be
passed to it as `record`.
Raises:
See _make_data_set for the ValueError and TypeError exceptions that can be raised
Returns:
The resulting dataset.
"""
setpoint_datay = np.array(y)
setpoint_datax = np.array(x)
setpoint_dataxy = np.tile(setpoint_datax, [setpoint_datay.size, 1])
preset_data = np.NaN * np.ones((setpoint_datay.size, setpoint_datax.size))
setpointy = DataArray(name=yname, array_id=yname, preset_data=setpoint_datay,
unit=yunit, is_setpoint=True)
setpointx = DataArray(name=xname, array_id=xname, preset_data=setpoint_dataxy,
unit=xunit, set_arrays=(setpointy,), is_setpoint=True)
if isinstance(zname, (str, qcodes.Parameter)):
if isinstance(z, np.ndarray):
measured_data_list = [z]
else:
measured_data_list = z
measurement_list = [zname]
else:
measured_data_list = z
measurement_list = zname
measurement_unit = zunit