How to use the pywps.Format function in pywps

To help you get started, we’ve selected a few pywps examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github geopython / pywps / tests / test_execute.py View on Github external
with nc.Dataset(url) as D:
            response.outputs['conventions'].data = D.Conventions

        response.outputs['outdods'].url = url
        response.outputs['ncraw'].file = os.path.join(DATA_DIR, 'netcdf', 'time.nc')
        response.outputs['ncraw'].data_format = FORMATS.NETCDF
        return response

    return Process(handler=complex_proces,
                   identifier='my_opendap_process',
                   title='Opendap process',
                   inputs=[
                       ComplexInput(
                           'dods',
                           'Opendap input',
                           supported_formats=[Format('DODS'), Format('NETCDF')],
                           #   mode=MODE.STRICT
                       )
                   ],
                   outputs=[
                       LiteralOutput(
                           'conventions',
                           'NetCDF convention',
                       ),
                       ComplexOutput('outdods', 'Opendap output',
                                     supported_formats=[FORMATS.DODS, ],
                                     as_reference=True),
                       ComplexOutput('ncraw', 'NetCDF raw data output',
                                     supported_formats=[FORMATS.NETCDF, ],
                                     as_reference=False)
                   ])
github geopython / pywps / tests / test_ows.py View on Github external
if grass.mapcalc("$output = $input + $value", output="output", input="input", value=1.0) != 0:
            raise NoApplicableCode("Could not set GRASS region.")

        # Export the result
        out = "./output.tif"
        if grass.run_command("r.out.gdal", input="output", type="Float32", output=out) != 0:
            raise NoApplicableCode("Could not export result from GRASS.")

        response.outputs['output'] = out
        return response

    return Process(handler=sum_one,
                   identifier='sum_one',
                   title='Process Sum One',
                   inputs=[ComplexInput('input', [Format('image/img')])],
                   outputs=[ComplexOutput('output', [Format('image/tiff')])])
github bird-house / flyingpigeon / flyingpigeon / processes / wps_sdm_allinone.py View on Github external
netCDF spatial increment",
                          supported_formats=[Format('image/png')],
                          as_reference=True,
                          ),

            ComplexOutput("output_indices", "Climate indices for growth conditions over all timesteps",
                          abstract="Archive (tar/zip) containing calculated climate indices",
                          supported_formats=[Format('application/x-tar'),
                                             Format('application/zip')
                                             ],
                          as_reference=True,
                          ),

            ComplexOutput("output_reference", "Climate indices for growth conditions of reference period",
                          abstract="Archive (tar/zip) containing calculated climate indices",
                          supported_formats=[Format('application/x-tar'),
                                             Format('application/zip')
                                             ],
                          as_reference=True,
                          ),

            ComplexOutput("output_prediction", "predicted growth conditions",
                          abstract="Archive containing files of the predicted\
                                     growth conditions",
                          supported_formats=[Format('application/x-tar'),
                                             Format('application/zip')
                                             ],
                          as_reference=True,
                          ),

            ComplexOutput("output_info", "GAM statistics information",
                          abstract="Graphics and information of the learning statistics",
github bird-house / flyingpigeon / flyingpigeon / processes / wps_climatefactsheet.py View on Github external
def __init__(self):
        inputs = [
            ComplexInput('resource', 'Resource',
                         abstract='NetCDF Files or archive (tar/zip) containing NetCDF files.',
                         metadata=[Metadata('Info')],
                         min_occurs=1,
                         max_occurs=1000,
                         supported_formats=[
                             Format('application/x-netcdf'),
                             Format('application/x-tar'),
                             Format('application/zip'),
                         ]),

            LiteralInput("region", "Region",
                         # abstract= countries_longname(), # need to handle special non-ascii char in countries.
                         data_type='string',
                         min_occurs=0,
                         max_occurs=len(countries()),
                         allowed_values=countries()),  # REGION_EUROPE #COUNTRIES
        ]

        ###########
        # OUTPUTS
        ###########
        outputs = [
            ComplexOutput('output_nc', "Subsets",
                          abstract="Tar archive containing the netCDF files",
github bird-house / flyingpigeon / flyingpigeon / processes / wps_segetalflora.py View on Github external
LiteralInput("culture_type", "Culture type",
                         abstract="Select culture type",
                         default='fallow',
                         data_type='string',
                         min_occurs=1,
                         max_occurs=8,
                         allowed_values=["fallow", "intensive", "extensive"]  # sem
                         ),
        ]

        outputs = [
            ComplexOutput("out_tasmean", "Yearly mean temperature",
                          abstract="Tar archive containing the netCDF EUR tas mean files",
                          supported_formats=[Format('application/x-tar'),
                                             Format('application/x-netcdf')],
                          as_reference=True,
                          ),

            ComplexOutput("out_segetalflora", "Segetalflora",
                          abstract="Tar archive containing the segetalflora data",
                          supported_formats=[Format('application/x-tar'),
                                             Format('application/x-netcdf')],
                          as_reference=True,
                          ),

            ComplexOutput('output_log', 'Logging information',
                          abstract="Collected logs during process run.",
                          as_reference=True,
                          supported_formats=[Format('text/plain')]
                          ),
        ]
github bird-house / flyingpigeon / flyingpigeon / processes / wps_analogs_model.py View on Github external
ComplexOutput('sim_netcdf', 'Sim Seasonal cycle',
                          abstract="Sim seasonal cycle netCDF",
                          as_reference=True,
                          supported_formats=[Format('application/x-netcdf')]
                          ),

            ComplexOutput("output", "Analogues Viewer html page",
                          abstract="Interactive visualization of calculated analogues",
                          supported_formats=[Format("text/html")],
                          as_reference=True,
                          ),

            ComplexOutput('output_log', 'Logging information',
                          abstract="Collected logs during process run.",
                          as_reference=True,
                          supported_formats=[Format('text/plain')]
                          ),
        ]

        super(AnalogsmodelProcess, self).__init__(
            self._handler,
            identifier="analogs_model",
            title="Analogues of circulation (based on climate model data)",
            abstract='Search for days with analogue pressure pattern for models data sets',
            version="0.10",
            metadata=[
                Metadata('LSCE', 'http://www.lsce.ipsl.fr/en/index.php'),
                Metadata('Doc', 'http://flyingpigeon.readthedocs.io/en/latest/'),
            ],
            inputs=inputs,
            outputs=outputs,
            status_supported=True,
github bird-house / flyingpigeon / flyingpigeon / processes / wps_plot_spaghetti.py View on Github external
def __init__(self):
        inputs = [
            ComplexInput('resource', 'Resource',
                         abstract='NetCDF Files (with one variable) or archive (tar/zip) containing NetCDF files.',
                         metadata=[Metadata('Info')],
                         min_occurs=1,
                         max_occurs=1000,
                         supported_formats=[
                             Format('application/x-netcdf'),
                             Format('application/x-tar'),
                             Format('application/zip'),
                         ]),

            LiteralInput("variable", "Variable",
                         abstract="Variable to be expected in the input files (variable will be detected if not set)",
                         default=None,
                         data_type='string',
                         min_occurs=0,
                         max_occurs=1,
                         ),

            LiteralInput('delta', 'Delta',
                         abstract='To set an offset for the values.'
                                  'e.g. -273.15 to transform Kelvin to Celsius',
                         data_type='float',
                         default=0,
github bird-house / flyingpigeon / flyingpigeon / processes / wps_weatherregimes_projection.py View on Github external
), ]
        outputs = [
            ComplexOutput("output_pca", "R - datafile",
                          abstract="Principal components (PCA)",
                          supported_formats=[Format('text/plain')],
                          as_reference=True,
                          ),

            ComplexOutput("output_classification", "R - workspace",
                          abstract="Weather regime classification",
                          supported_formats=[Format("application/octet-stream")],
                          as_reference=True,
                          ),
            ComplexOutput("output_frequency", "Frequency",
                          abstract="Weather regime frequency values per year",
                          supported_formats=[Format('text/plain')],
                          as_reference=True,
                          ),

            ComplexOutput('output_netcdf', 'Subsets for one dataset',
                          abstract="Prepared netCDF file as input for weatherregime calculation",
                          as_reference=True,
                          supported_formats=[Format('application/x-netcdf')]
                          ),

            ComplexOutput('output_log', 'Logging information',
                          abstract="Collected logs during process run.",
                          as_reference=True,
                          supported_formats=[Format('text/plain')]
                          ),
        ]
github bird-house / flyingpigeon / flyingpigeon / processes / wps_plot_maptimemean.py View on Github external
def __init__(self):
        inputs = [
            ComplexInput('resource', 'Resource',
                         abstract='NetCDF Files (with one variable) or archive (tar/zip) containing NetCDF files.'
                                  'if multiple files are provided, a mean over all will be displayed',
                         metadata=[Metadata('Info')],
                         min_occurs=1,
                         max_occurs=1000,
                         supported_formats=[
                             Format('application/x-netcdf'),
                             Format('application/x-tar'),
                             Format('application/zip'),
                         ]),

            LiteralInput("variable", "Variable",
                         abstract="Variable to be expected in the input files (variable will be detected if not set)",
                         default=None,
                         data_type='string',
                         min_occurs=0,
                         max_occurs=1,
                         ),

            LiteralInput("title", "Title",
                         abstract="Title to be written over the graphic",
                         default=None,
                         data_type='string',
github bird-house / flyingpigeon / flyingpigeon / processes / wps_subset_continents.py View on Github external
def __init__(self):
        inputs = [
            LiteralInput('region', 'Region',
                         data_type='string',
                         abstract="Continent name.",
                         min_occurs=1,
                         max_occurs=len(_CONTINENTS_),
                         default='Africa',
                         allowed_values=_CONTINENTS_),  # REGION_EUROPE #COUNTRIES

            ComplexInput('resource', 'Resource',
                         abstract='NetCDF Files or archive (tar/zip) containing netCDF files.',
                         min_occurs=1,
                         max_occurs=1000,
                         supported_formats=[
                             Format('application/x-netcdf'),
                             Format('application/x-tar'),
                             Format('application/zip'),
                         ]),
        ]

        outputs = [output, metalink]

        super(SubsetcontinentProcess, self).__init__(
            self._handler,
            identifier="subset_continents",
            title="Subset Continents",
            version="0.11",
            abstract="Return the data whose grid cells intersect the selected continents for each input dataset.",
            metadata=[
                Metadata('Doc',
                         'https://flyingpigeon.readthedocs.io/en/latest/processes_des.html#subset-processes'),