Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model_epoch1000/model.h5")
print("Loaded model from disk")
loaded_model.compile(loss='mse', optimizer='sgd')
return loaded_model
# model = baseline_model(grid_size=128, num_actions=4, hidden_size=512)
model = load_model()
# model.summary()
# necessary evil
pt.pytesseract.tesseract_cmd = 'C:/Program Files (x86)/Tesseract-OCR/tesseract'
game = FIFA()
print("game object created")
epoch = 1000 # Number of games played in training, I found the model needs about 4,000 games till it plays well
train_mode = 0
if train_mode == 1:
# Train the model
hist = train(game, model, epoch, verbose=1)
print("Training done")
else:
# Test the model
hist = test(game, model, epoch, verbose=1)
def ocr_img(image):
# win环境
# tesseract 路径
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract'
# 语言包目录和参数
tessdata_dir_config = '--tessdata-dir "C:\\Program Files (x86)\\Tesseract-OCR\\tessdata" --psm 6'
# 转化为灰度图
image = image.convert('L')
# 把图片变成二值图像
image = binarizing(image, 190)
img=depoint(image)
#img.show()
result = pytesseract.image_to_string(image, config=tessdata_dir_config)
return result
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
arch = 'resnet18'
model_file = 'whole_%s_places365_python36.pth.tar' % arch
if not os.access(model_file, os.W_OK):
weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
os.system('wget ' + weight_url)
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract'
from utils import label_map_util
from utils import visualization_utils as vis_util
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
#RUN AS ADMINISTRATOR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
import pyautogui
import pytesseract
import cv2
import numpy
import PIL
import os
import random
import time
import pickle
import operator
pytesseract.pytesseract.tesseract_cmd = "C:\\Program Files (x86)\\Tesseract-OCR\\tesseract.exe"
class item():#simple for now, but in future maybe pull ge limits and items from a website??
def __init__(self, item, limit, image, image_path):
self.item = item
self.limit = limit
self.image = image
self.image_path = image_path
self.available_to_buy = limit
def set_bought_at(self, price):
self.bought_at = price
def set_sold_at(self, price):
self.sold_at = price
def set_box_containing_item(self, box_coords):
which_tesseract = subprocess.Popen('which tesseract', stdout=subprocess.PIPE, shell=True).communicate()[
0].rstrip()
path_not_found = False
if get_os() == 'win':
win_default_tesseract_path = 'C:\\Program Files (x86)\\Tesseract-OCR'
if '/c/' in str(which_tesseract):
win_which_tesseract_path = which_tesseract.replace('/c/', 'C:\\').replace('/', '\\') + '.exe'
else:
win_which_tesseract_path = which_tesseract.replace('\\', '\\\\')
if _check_path(win_default_tesseract_path):
pytesseract.pytesseract.tesseract_cmd = win_default_tesseract_path + '\\tesseract'
elif _check_path(win_which_tesseract_path):
pytesseract.pytesseract.tesseract_cmd = win_which_tesseract_path
else:
path_not_found = True
elif get_os() == 'linux' or get_os() == 'osx':
if _check_path(which_tesseract):
pytesseract.pytesseract.tesseract_cmd = which_tesseract
else:
path_not_found = True
else:
path_not_found = True
if path_not_found:
logger.critical('Unable to find Tesseract.')
logger.critical('Please consult wiki for complete setup instructions.')
return False
return True
# import the necessary packages
import pytesseract
from imutils.video import VideoStream
from imutils.video import FPS
from imutils.object_detection import non_max_suppression
import numpy as np
import argparse
import imutils
import time
import cv2
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
def decode_predictions(scores, geometry):
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the
# geometrical data used to derive potential bounding box
# coordinates that surround text
scoresData = scores[0, 0, y]
xData0 = geometry[0, 0, y]