How to use the pyrealsense2.config function in pyrealsense2

To help you get started, weā€™ve selected a few pyrealsense2 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / Python / readBag.py View on Github external
# Parse the command line arguments to an object
    args = parser.parse_args()
    # Safety if no parameter have been given
    if not args.input:
        print("No input paramater have been given.")
        print("For help type --help")
        exit()
    # Check if the given file have bag extension
    if os.path.splitext(args.input)[1] != ".bag":
        print("The given file is not of correct file format.")
        print("Only .bag files are accepted")
        exit()

        align = rs.align(rs.stream.color)
        pipeline = rs.pipeline()
        config = rs.config()
        # Tell config that we will use a recorded device from filem to be used by the pipeline through playback.
        rs.config.enable_device_from_file(config, args.input)
        # Configure the pipeline to stream the depth stream
        config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
        config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30)

        # Start streaming from file
        profile = pipeline.start(config)

        intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
        # print( 'camera_intrinsic', intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)

        # Create opencv window to render image in
        cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)
        cv2.namedWindow("Color Stream", cv2.WINDOW_AUTOSIZE)
        pinhole_camera_intrinsic = PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / Basic / readBag.py View on Github external
if not args.input:
        print("No input paramater have been given.")
        print("For help type --help")
        exit()

    if os.path.splitext(args.input)[1] != ".bag":
        print("The given file is not of correct file format.")
        print("Only .bag files are accepted")
        exit()

    align = rs.align(rs.stream.color)
    pipeline = rs.pipeline()
    config = rs.config()

    rs.config.enable_device_from_file(config, args.input)

    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30)


    profile = pipeline.start(config)

    intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()

    cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)
    cv2.namedWindow("Color Stream", cv2.WINDOW_AUTOSIZE)
    pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)

    geometrie_added = False
    vis = o3d.visualization.VisualizerWithKeyCallback()
github IntelRealSense / librealsense / wrappers / python / examples / read_bag_example.py View on Github external
# Safety if no parameter have been given
if not args.input:
    print("No input paramater have been given.")
    print("For help type --help")
    exit()
# Check if the given file have bag extension
if os.path.splitext(args.input)[1] != ".bag":
    print("The given file is not of correct file format.")
    print("Only .bag files are accepted")
    exit()
try:
    # Create pipeline
    pipeline = rs.pipeline()

    # Create a config object
    config = rs.config()
    # Tell config that we will use a recorded device from filem to be used by the pipeline through playback.
    rs.config.enable_device_from_file(config, args.input)
    # Configure the pipeline to stream the depth stream
    config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)

    # Start streaming from file
    pipeline.start(config)

    # Create opencv window to render image in
    cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)
    
    # Create colorizer object
    colorizer = rs.colorizer();

    # Streaming loop
    while True:
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / Python / recordBag.py View on Github external
import pyrealsense2 as rs
import numpy as np
import cv2
import time
from open3d import *
import os

if __name__=="__main__":
    align = rs.align(rs.stream.color)

    config = rs.config()
    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30)

    config.enable_record_to_file('object_detection2.bag') 

    pipeline = rs.pipeline()
    profile = pipeline.start(config)

    # get camera intrinsics
    intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
    print(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    pinhole_camera_intrinsic = PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    # print(type(pinhole_camera_intrinsic))
    
    cv2.namedWindow('Color Stream', cv2.WINDOW_AUTOSIZE)
    cv2.namedWindow('Depth Stream', cv2.WINDOW_AUTOSIZE)
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / ObjectRecognitionUsingPointNet / client.py View on Github external
obj_list = ['box','polar bear','duck','turtle','whale','dog','elephant','horse']
    obj_list = ['ē›’子','åŒ—ęžē†Š','小黄éø­','å°ęµ·é¾Ÿ','ē‹¬č§’é²ø','ē°ē‹—','å¤§č±”','马']
    color_list = [[96/255,96/255,96/255],[1,97/255,0],[227/255,207/255,87/255],[176/255,224/255,230/255],
                [106/255,90/255,205/255],[56/255,94/255,15/255],[61/255,89/255,171/255],[51/255,161/255,201/255],
                [178/255,34/255,34/255],[138/255,43/255,226/255]]
    


    s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    s.connect(('titanxp.sure-to.win',8899))
    print(s.recv(1024).decode('utf-8'))

    align = rs.align(rs.stream.color)
    #align = rs.align(rs.stream.depth)

    config = rs.config()
    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 15)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 15)
    pipeline = rs.pipeline()
    profile = pipeline.start(config)

    # get camera intrinsics
    intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
    # print(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    # print(type(pinhole_camera_intrinsic))
    
    cv2.namedWindow('Color Stream', cv2.WINDOW_AUTOSIZE)
    cv2.namedWindow('Depth Stream', cv2.WINDOW_AUTOSIZE)

    cam = rgbdTools.Camera(616.8676147460938,617.0631103515625,319.57012939453125,233.06488037109375)
github IntelRealSense / librealsense / wrappers / python / examples / align-depth2color.py View on Github external
##              Align Depth to Color               ##
#####################################################

# First import the library
import pyrealsense2 as rs
# Import Numpy for easy array manipulation
import numpy as np
# Import OpenCV for easy image rendering
import cv2

# Create a pipeline
pipeline = rs.pipeline()

#Create a config and configure the pipeline to stream
#  different resolutions of color and depth streams
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

# Start streaming
profile = pipeline.start(config)

# Getting the depth sensor's depth scale (see rs-align example for explanation)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
print("Depth Scale is: " , depth_scale)

# We will be removing the background of objects more than
#  clipping_distance_in_meters meters away
clipping_distance_in_meters = 1 #1 meter
clipping_distance = clipping_distance_in_meters / depth_scale
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / MutiView3DReconstruction(paper) / interfaceVersion.py View on Github external
from lib import rgbdTools,keyPoints,registration,template
import cv2
import numpy as np 
from scipy import optimize
import open3d as o3d 
import copy
import sys
import os 
import time


if __name__=="__main__":
    align = rs.align(rs.stream.color)
    #align = rs.align(rs.stream.depth)

    config = rs.config()
    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 6)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 6)
    pipeline = rs.pipeline()
    profile = pipeline.start(config)

    # get camera intrinsics
    intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
    # print(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    RealSense = rgbdTools.Camera(fx = intr.fx, fy = intr.fy, cx =  intr.ppx, cy = intr.ppy)
    TablePlane = keyPoints.Plane()
    # print(type(pinhole_camera_intrinsic))
    
    cv2.namedWindow('Color Stream', cv2.WINDOW_AUTOSIZE)
    # cv2.namedWindow('Depth Stream', cv2.WINDOW_AUTOSIZE)
github IntelRealSense / librealsense / wrappers / python / examples / box_dimensioner_multicam / box_dimensioner_multicam_demo.py View on Github external
def run_demo():
	
	# Define some constants 
	resolution_width = 1280 # pixels
	resolution_height = 720 # pixels
	frame_rate = 15  # fps
	dispose_frames_for_stablisation = 30  # frames
	
	chessboard_width = 6 # squares
	chessboard_height = 9 	# squares
	square_size = 0.0253 # meters

	try:
		# Enable the streams from all the intel realsense devices
		rs_config = rs.config()
		rs_config.enable_stream(rs.stream.depth, resolution_width, resolution_height, rs.format.z16, frame_rate)
		rs_config.enable_stream(rs.stream.infrared, 1, resolution_width, resolution_height, rs.format.y8, frame_rate)
		rs_config.enable_stream(rs.stream.color, resolution_width, resolution_height, rs.format.bgr8, frame_rate)

		# Use the device manager class to enable the devices and get the frames
		device_manager = DeviceManager(rs.context(), rs_config)
		device_manager.enable_all_devices()
		
		# Allow some frames for the auto-exposure controller to stablise
		for frame in range(dispose_frames_for_stablisation):
			frames = device_manager.poll_frames()

		assert( len(device_manager._available_devices) > 0 )
		"""
		1: Calibration
		Calibrate all the available devices to the world co-ordinates.
github gregorsamsa183 / RealTime3DPoseTracker-OpenPose / APP.py View on Github external
#############################################

scoresDecisionTree= cross_val_score(decisionTreeCLF, xTrainR, lTrainR, cv=5)

print(scoresDecisionTree)

print("Accuracy Decision Tree: %0.2f (+/- %0.2f)" % (scoresDecisionTree.mean(), scoresDecisionTree.std() * 2))
############################################


# Create a pipeline
pipeline = rs.pipeline()

# Create a config and configure the pipeline to stream
#  different resolutions of color and depth streams
config = rs.config()

config.enable_stream(rs.stream.depth, 640, 360, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

# Start streaming
profile = pipeline.start(config)

# Getting the depth sensor's depth scale (see rs-align example for explanation)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
print("Depth Scale is: ", depth_scale)

# We will be removing the background of objects more than
#  clipping_distance_in_meters meters away
clipping_distance_in_meters = 10  # 1 meter
clipping_distance = clipping_distance_in_meters / depth_scale
github IntelRealSense / librealsense / wrappers / python / examples / opencv_pointcloud_viewer.py View on Github external
    @property
    def rotation(self):
        Rx, _ = cv2.Rodrigues((self.pitch, 0, 0))
        Ry, _ = cv2.Rodrigues((0, self.yaw, 0))
        return np.dot(Ry, Rx).astype(np.float32)

    @property
    def pivot(self):
        return self.translation + np.array((0, 0, self.distance), dtype=np.float32)


state = AppState()

# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

# Start streaming
pipeline.start(config)

# Get stream profile and camera intrinsics
profile = pipeline.get_active_profile()
depth_profile = rs.video_stream_profile(profile.get_stream(rs.stream.depth))
depth_intrinsics = depth_profile.get_intrinsics()
w, h = depth_intrinsics.width, depth_intrinsics.height

# Processing blocks
pc = rs.pointcloud()
decimate = rs.decimation_filter()
decimate.set_option(rs.option.filter_magnitude, 2 ** state.decimate)