How to use the pyreadstat.write_sav function in pyreadstat

To help you get started, we’ve selected a few pyreadstat examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Roche / pyreadstat / tests / test_basic.py View on Github external
def test_zsav_write_basic(self):

        file_label = "basic write"
        file_note = "These are some notes"
        col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
        variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
        missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
        path = os.path.join(self.write_folder, "basic_write.zsav")
        pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, compress=True, note=file_note,
                     variable_value_labels=variable_value_labels, missing_ranges=missing_ranges)
        df, meta = pyreadstat.read_sav(path, user_missing=True)
        self.assertTrue(df.equals(self.df_pandas))
        self.assertEqual(meta.file_label, file_label)
        self.assertListEqual(meta.column_labels, col_labels)
        self.assertEqual(meta.notes[0], file_note)
        self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
github Roche / pyreadstat / tests / test_basic.py View on Github external
def test_zsav_write_dates(self):

        #if sys.version_info[0] < 3:
        #    return

        path = os.path.join(self.write_folder, "dates_write.sav")
        pyreadstat.write_sav(self.df_sas_dates, path, compress=True)
        df, meta = pyreadstat.read_sav(path)
        self.assertTrue(df.equals(self.df_sas_dates))
github Roche / pyreadstat / tests / test_basic.py View on Github external
def test_sav_write_dates(self):

        #if sys.version_info[0] < 3:
        #    return

        path = os.path.join(self.write_folder, "dates_write.sav")
        pyreadstat.write_sav(self.df_sas_dates, path)
        df, meta = pyreadstat.read_sav(path)
        self.assertTrue(df.equals(self.df_sas_dates))
github Roche / pyreadstat / tests / test_basic.py View on Github external
def test_sav_write_basic(self):

        file_label = "basic write"
        file_note = "These are some notes"
        col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
        variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
        missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
        #variable_alignment = {'mychar':"center", 'myord':"right"}
        variable_display_width = {'mychar':20}
        variable_measure = {"mychar": "nominal"}
        path = os.path.join(self.write_folder, "basic_write.sav")
        pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, note=file_note, 
            variable_value_labels=variable_value_labels, missing_ranges=missing_ranges, variable_display_width=variable_display_width,
            variable_measure=variable_measure) #, variable_alignment=variable_alignment)
        df, meta = pyreadstat.read_sav(path, user_missing=True)
        self.assertTrue(df.equals(self.df_pandas))
        self.assertEqual(meta.file_label, file_label)
        self.assertListEqual(meta.column_labels, col_labels)
        self.assertEqual(meta.notes[0], file_note)
        self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
        self.assertEqual(meta.variable_display_width['mychar'], variable_display_width['mychar'])
        #self.assertDictEqual(meta.variable_alignment, variable_alignment)
        self.assertEqual(meta.variable_measure["mychar"], variable_measure["mychar"])

pyreadstat

Reads and Writes SAS, SPSS and Stata files into/from pandas data frames.

Apache-2.0
Latest version published 1 month ago

Package Health Score

84 / 100
Full package analysis

Similar packages