How to use the pyopenms.FeatureMap function in pyopenms

To help you get started, we’ve selected a few pyopenms examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github OpenMS / OpenMS / src / pyOpenMS / pyTOPP / MRMTransitionGroupScorer.py View on Github external
def algorithm(exp, targeted, picker, scorer, trafo):

    output = pyopenms.FeatureMap()

    scorer.prepareProteinPeptideMaps_(targeted)

    chrom_map = {}
    pepmap = {}
    trmap = {}
    for i, chrom in enumerate(exp.getChromatograms()):
        chrom_map[ chrom.getNativeID() ] = i
    for i, pep in enumerate(targeted.getCompounds() ):
        pepmap[ pep.id ] = i
    for i, tr in enumerate(targeted.getTransitions() ):
        tmp = trmap.get( tr.getPeptideRef() , [])
        tmp.append( i )
        trmap[ tr.getPeptideRef() ] = tmp

    swath_maps_dummy = []
github OpenMS / OpenMS / src / pyOpenMS / pyTOPP / MapAlignerPoseClustering.py View on Github external
fh.load(in_f, mse)
                mse.updateRanges()
                sizes.append((mse.getSize(), in_f))
                plog.setProgress(i)
        plog.endProgress()
        __, file_ = max(sizes)

    f_fmxl = pms.FeatureXMLFile()
    if not out_files:
        options = f_fmxl.getOptions()
        options.setLoadConvexHull(False)
        options.setLoadSubordinates(False)
        f_fmxl.setOptions(options)

    if align_features:
        map_ref = pms.FeatureMap()
        f_fxml_tmp = pms.FeatureXMLFile()
        options = f_fmxl.getOptions()
        options.setLoadConvexHull(False)
        options.setLoadSubordinates(False)
        f_fxml_tmp.setOptions(options)
        f_fxml_tmp.load(file_, map_ref)
        algorithm.setReference(map_ref)
    else:
        map_ref = pms.MSExperiment()
        pms.MzMLFile().load(file_, map_ref)
        algorithm.setReference(map_ref)

    plog.startProgress(0, len(in_files), "Align input maps")
    for i, in_file in enumerate(in_files):
        trafo = pms.TransformationDescription()
        if align_features:
github OpenMS / OpenMS / src / pyOpenMS / pyTOPP / IDMapper.py View on Github external
pms.IdXMLFile().load(id_file, protein_ids, peptide_ids)

    mapper = pms.IDMapper()
    mapper.setParameters(params)

    if in_type == pms.Type.CONSENSUSXML:
        file_ = pms.ConsensusXMLFile()
        map_ = pms.ConsensusMap()
        file_.load(in_file, map_)
        mapper.annotate(map_, peptide_ids, protein_ids, use_subelements)
        addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING)
        file_.store(out_file, map_)

    elif in_type == pms.Type.FEATUREXML:
        file_ = pms.FeatureXMLFile()
        map_ = pms.FeatureMap()
        file_.load(in_file, map_)
        mapper.annotate(map_, peptide_ids, protein_ids, use_centroid_rt,
                use_centroid_mz)
        addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING)
        file_.store(out_file, map_)

    elif in_type == pms.Type.MZQ:
        file_ = pms.MzQuantMLFile()
        msq = pms.MSQuantifications()
        file_.load(in_file, msq)
        maps = msq.getConsensusMaps()
        for map_ in maps:
            mapper.annotate(map_, peptide_ids, protein_ids, use_subelements)
            addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING)
        msq.setConsensusMaps(maps)
        file_.store(out_file, msq)
github OpenMS / OpenMS / pyOpenMS / pyTOPP / FeatureFinderCentroided.py View on Github external
def run_featurefinder_centroided(input_path, params, seeds, out_path):

    fh = pms.MzMLFile()
    options = pms.PeakFileOptions()
    options.setMSLevels([1,1])
    fh.setOptions(options)
    input_map = pms.MSExperiment()
    fh.load(input_path, input_map)
    input_map.updateRanges()

    ff = pms.FeatureFinder()
    ff.setLogType(pms.LogType.CMD)

    features = pms.FeatureMap()
    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, input_map, features, params, seeds)

    features.setUniqueIds()
    addDataProcessing(features, params, pms.ProcessingAction.QUANTITATION)

    fh = pms.FeatureXMLFile()
    fh.store(out_path, features)
github OpenMS / OpenMS / src / pyOpenMS / pyTOPP / MapAlignerPoseClustering.py View on Github external
options = f_fmxl.getOptions()
        options.setLoadConvexHull(False)
        options.setLoadSubordinates(False)
        f_fxml_tmp.setOptions(options)
        f_fxml_tmp.load(file_, map_ref)
        algorithm.setReference(map_ref)
    else:
        map_ref = pms.MSExperiment()
        pms.MzMLFile().load(file_, map_ref)
        algorithm.setReference(map_ref)

    plog.startProgress(0, len(in_files), "Align input maps")
    for i, in_file in enumerate(in_files):
        trafo = pms.TransformationDescription()
        if align_features:
            map_ = pms.FeatureMap()
            f_fxml_tmp = pms.FeatureXMLFile()
            f_fxml_tmp.setOptions(f_fmxl.getOptions())
            f_fxml_tmp.load(in_file, map_)
            if in_file == file_:
                trafo.fitModel("identity")
            else:
                algorithm.align(map_, trafo)
            if out_files:
                pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo)
                addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT)
                f_fxml_tmp.store(out_files[i], map_)
        else:
            map_ = pms.MSExperiment()
            pms.MzMLFile().load(in_file, map_)
            if in_file == file_:
                trafo.fitModel("identity")
github OpenMS / OpenMS / src / pyOpenMS / pyTOPP / MRMTransitionGroupPicker.py View on Github external
def algorithm(exp, targeted, picker):

    output = pyopenms.FeatureMap()

    chrom_map = {}
    pepmap = {}
    trmap = {}
    for i, chrom in enumerate(exp.getChromatograms()):
        chrom_map[ chrom.getNativeID() ] = i
    for i, pep in enumerate(targeted.getPeptides() ):
        pepmap[ pep.id ] = i
    for i, tr in enumerate(targeted.getTransitions() ):
        tmp = trmap.get( tr.getPeptideRef() , [])
        tmp.append( i )
        trmap[ tr.getPeptideRef() ] = tmp

    for key, value in trmap.iteritems():
        print key, value
        transition_group = getTransitionGroup(exp, targeted, key, value, chrom_map)