How to use the pymap3d.coordconv3d.EarthEllipsoid function in pymap3d

To help you get started, we’ve selected a few pymap3d examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def ecef2ned(x, y, z, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    e, n, u = ecef2enu(x, y, z, lat0, lon0, h0, ell, deg=deg)
    return n, e, -u
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def ecef2enu(x, y, z, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    x0, y0, z0 = geodetic2ecef(lat0, lon0, h0, ell, deg=deg)
    return _uvw2enu(x - x0, y - y0, z - z0, lat0, lon0, deg=deg)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def ecef2geodetic(x, y=None, z=None, ell=EarthEllipsoid(), deg=True):
    if y is None:
        x, y, z = _depack(x)
    """Algorithm is based on
    http://www.astro.uni.torun.pl/~kb/Papers/geod/Geod-BG.htm
    This algorithm provides a converging solution to the latitude
equation
    in terms of the parametric or reduced latitude form (v)
    This algorithm provides a uniform solution over all latitudes as it
does
    not involve division by cos(phi) or sin(phi)
    """
    ea = ell.a
    eb = ell.b
    rad = hypot(x, y)
# Constant required for Latitude equation
    rho = arctan2(eb * z, ea * rad)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def geodetic2aer(lat, lon, h, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    e, n, u = geodetic2enu(lat, lon, h, lat0, lon0, h0, ell, deg=deg)
    return enu2aer(e, n, u, deg=deg)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def geodetic2enu(lat, lon, h, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    x1, y1, z1 = geodetic2ecef(lat, lon, h, ell, deg=deg)
    x2, y2, z2 = geodetic2ecef(lat0, lon0, h0, ell, deg=deg)
    dx = x1 - x2
    dy = y1 - y2
    dz = z1 - z2
    return _uvw2enu(dx, dy, dz, lat0, lon0, deg=deg)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def ned2geodetic(n, e, d, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    x, y, z = enu2ecef(e, n, -d, lat0, lon0, h0,  ell, deg=deg)
    return ecef2geodetic(x, y, z, ell, deg=deg)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def enu2ecef(e1, n1, u1, lat0, lon0, alt0, ell=EarthEllipsoid(), deg=True):
    x0, y0, z0 = geodetic2ecef(lat0, lon0, alt0, ell, deg=deg)
    dx, dy, dz = _enu2uvw(e1, n1, u1, lat0, lon0, deg=deg)
    return x0 + dx, y0 + dy, z0 + dz
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def ned2ecef(n, e, d, lat0, lon0, h0, ell=EarthEllipsoid(), deg=True):
    return enu2ecef(e, n, -d, lat0, lon0, h0, ell, deg=deg)
github scivision / pymap3d / pymap3d / coordconv3d.py View on Github external
def aer2ecef(az, el, srange, lat0, lon0, alt0, ell=EarthEllipsoid(), deg=True):
    """
     Input: az,el; lat0,lon0 [degrees]   srange, alt0 [meters]
    
     output: ECEF x,y,z  [meters]
     
    if you specify NaN for srange, return value z will be NaN
    """
    # Origin of the local system in geocentric coordinates.
    x0, y0, z0 = geodetic2ecef(lat0, lon0, alt0, ell, deg=deg)
    # Convert Local Spherical AER to ENU
    e1, n1, u1 = aer2enu(az, el, srange, deg=deg)
    # Rotating ENU to ECEF
    dx, dy, dz = _enu2uvw(e1, n1, u1, lat0, lon0, deg=deg)
    # Origin + offset from origin equals position in ECEF
    return x0 + dx, y0 + dy, z0 + dz