Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_bicubic(self):
grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(self.GRID).mss)
lon = np.arange(-180, 180, 1) + 1 / 3.0
lat = np.arange(-90, 90, 1) + 1 / 3.0
x, y = np.meshgrid(lon, lat, indexing="ij")
z = grid.bicubic(
collections.OrderedDict(lon=x.flatten(), lat=y.flatten()))
self.assertIsInstance(z, np.ndarray)
for fitting_model in [
'linear', 'polynomial', 'c_spline', 'c_spline_periodic',
'akima', 'akima_periodic', 'steffen'
]:
other = grid.bicubic(collections.OrderedDict(lon=x.flatten(),
lat=y.flatten()),
fitting_model=fitting_model)
def test_biavariate(self):
grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(self.GRID).mss)
self.assertIsInstance(grid, pyinterp.backends.xarray.Grid2D)
self.assertIsInstance(grid, pyinterp.Grid2D)
other = pickle.loads(pickle.dumps(grid))
self.assertIsInstance(other, pyinterp.backends.xarray.Grid2D)
self.assertIsInstance(grid, pyinterp.Grid2D)
self.assertIsInstance(grid.x, pyinterp.Axis)
self.assertIsInstance(grid.y, pyinterp.Axis)
self.assertIsInstance(grid.array, np.ndarray)
lon = np.arange(-180, 180, 1) + 1 / 3.0
lat = np.arange(-90, 90, 1) + 1 / 3.0
x, y = np.meshgrid(lon, lat, indexing="ij")
z = grid.bivariate(
z = grid.bivariate(
collections.OrderedDict(lon=x.flatten(), lat=y.flatten()))
self.assertIsInstance(z, np.ndarray)
z = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
lat=y.flatten()),
interpolator="nearest")
self.assertIsInstance(z, np.ndarray)
z = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
lat=y.flatten()),
interpolator="inverse_distance_weighting")
self.assertIsInstance(z, np.ndarray)
grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(self.GRID).mss,
geodetic=False)
self.assertIsInstance(grid, pyinterp.backends.xarray.Grid2D)
w = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
lat=y.flatten()),
interpolator="inverse_distance_weighting")
self.assertNotEqual(
np.ma.fix_invalid(z).mean(),
np.ma.fix_invalid(w).mean())
with self.assertRaises(ValueError):
grid.bivariate(collections.OrderedDict(lon=x.flatten(),
lat=y.flatten()),
bounds_error=True)
lon = pyinterp.Axis(np.linspace(0, 360, 100), is_circle=True)