How to use the proximity.Proximity function in proximity

To help you get started, we’ve selected a few proximity examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Thor77 / Blueproximity / proximity.py View on Github external
signal.signal(signal.SIGINT, signal.SIG_DFL)
    # read config if any
    new_config = False
    try:
        config = ConfigObj(os.getenv('HOME') + '/.blueproximityrc',{'create_empty':False,'file_error':True,'configspec':conf_specs})
    except:
        new_config = True
    if new_config:
        config = ConfigObj(os.getenv('HOME') + '/.blueproximityrc',{'create_empty':True,'file_error':False,'configspec':conf_specs})
        # next line fixes a problem with creating empty strings in default values for configobj
        config['device_mac'] = ''
    vdt = Validator()
    config.validate(vdt, copy=True)
    config.write()
    
    p = Proximity(config)
    p.start()
    pGui = ProximityGUI(p,config,new_config)

    # make GTK threadable 
    gtk.gdk.threads_init()
    gtk.main()
github aamir-mustafa / pcl-adversarial-defense / pcl_training.py View on Github external
shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)
github aamir-mustafa / pcl-adversarial-defense / pcl_training_adversarial_fgsm.py View on Github external
shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)
github aamir-mustafa / pcl-adversarial-defense / pcl_training_adversarial_pgd.py View on Github external
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.train_batch, pin_memory=True,
                                              shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)
github aamir-mustafa / pcl-adversarial-defense / pcl_training_adversarial_pgd.py View on Github external
shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)
github aamir-mustafa / pcl-adversarial-defense / pcl_training_adversarial_fgsm.py View on Github external
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.train_batch, pin_memory=True,
                                              shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)
github aamir-mustafa / pcl-adversarial-defense / pcl_training.py View on Github external
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.train_batch, pin_memory=True,
                                              shuffle=True, num_workers=args.workers)

    testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
                                            download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, pin_memory=True,
                                             shuffle=False, num_workers=args.workers)
    
# Loading the Model    
    model = resnet(num_classes=num_classes,depth=110)

    if True:
        model = nn.DataParallel(model).cuda()

    criterion_xent = nn.CrossEntropyLoss()
    criterion_prox_1024 = Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_prox_256 = Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    criterion_conprox_1024 = Con_Proximity(num_classes=num_classes, feat_dim=1024, use_gpu=use_gpu)
    criterion_conprox_256 = Con_Proximity(num_classes=num_classes, feat_dim=256, use_gpu=use_gpu)
    
    optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=1e-04, momentum=0.9)
    
    optimizer_prox_1024 = torch.optim.SGD(criterion_prox_1024.parameters(), lr=args.lr_prox)
    optimizer_prox_256 = torch.optim.SGD(criterion_prox_256.parameters(), lr=args.lr_prox)

    optimizer_conprox_1024 = torch.optim.SGD(criterion_conprox_1024.parameters(), lr=args.lr_conprox)
    optimizer_conprox_256 = torch.optim.SGD(criterion_conprox_256.parameters(), lr=args.lr_conprox)
    

    filename= 'Models_Softmax/CIFAR10_Softmax.pth.tar'
    checkpoint = torch.load(filename)

proximity

Mesh proximity queries based on libspatialindex and rtree, extracted from Trimesh

MIT
Latest version published 2 years ago

Package Health Score

36 / 100
Full package analysis