Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
assert pos is not None
pos = np.atleast_2d(pos)
assert pos.ndim == 2
assert pos.shape[1] == 2
n_text = pos.shape[0]
assert len(text) == n_text
anchor = anchor if anchor is not None else (0., 0.)
anchor = np.atleast_2d(anchor)
if anchor.shape[0] == 1:
anchor = np.repeat(anchor, n_text, axis=0)
assert anchor.ndim == 2
assert anchor.shape == (n_text, 2)
data_bounds = data_bounds if data_bounds is not None else NDC
data_bounds = _get_data_bounds(data_bounds, pos)
assert data_bounds.shape[0] == n_text
data_bounds = data_bounds.astype(np.float64)
assert data_bounds.shape == (n_text, 4)
return Bunch(
pos=pos, text=text, anchor=anchor, data_bounds=data_bounds,
_n_items=n_text, _n_vertices=self.vertex_count(text=text))
n_signals = len(x)
masks = _get_array(masks, (n_signals, 1), 1., np.float32)
# The mask is clu_idx + fractional mask
masks *= .99999
assert masks.shape == (n_signals, 1)
if isinstance(data_bounds, str) and data_bounds == 'auto':
xmin = [_min(_) for _ in x]
ymin = [_min(_) for _ in y]
xmax = [_max(_) for _ in x]
ymax = [_max(_) for _ in y]
data_bounds = np.c_[xmin, ymin, xmax, ymax]
if data_bounds is not None:
data_bounds = _get_data_bounds(data_bounds, length=n_signals)
data_bounds = data_bounds.astype(np.float64)
assert data_bounds.shape == (n_signals, 4)
return Bunch(
x=x, y=y, masks=masks, data_bounds=data_bounds,
_n_items=n_signals, _n_vertices=self.vertex_count(y=y))
def validate(self, pos=None, data_bounds=None, **kwargs):
"""Validate the requested data before passing it to set_data()."""
assert pos is not None
pos = np.atleast_2d(pos)
assert pos.ndim == 2
assert pos.shape[1] == 2
# By default, we assume that the coordinates are in NDC.
if data_bounds is None:
data_bounds = NDC
data_bounds = _get_data_bounds(data_bounds)
data_bounds = data_bounds.astype(np.float64)
assert data_bounds.shape == (1, 4)
return Bunch(
pos=pos, data_bounds=data_bounds,
_n_items=pos.shape[0], _n_vertices=self.vertex_count(pos=pos))
def validate(self, pos=None, color=None, data_bounds=None, **kwargs):
"""Validate the requested data before passing it to set_data()."""
assert pos is not None
pos = _as_array(pos)
pos = np.atleast_2d(pos)
assert pos.ndim == 2
n_lines = pos.shape[0]
assert pos.shape[1] == 4
# Color.
color = _get_array(color, (n_lines, 4), LineVisual.default_color)
# By default, we assume that the coordinates are in NDC.
if data_bounds is None:
data_bounds = NDC
data_bounds = _get_data_bounds(data_bounds, length=n_lines)
data_bounds = data_bounds.astype(np.float64)
assert data_bounds.shape == (n_lines, 4)
return Bunch(
pos=pos, color=color, data_bounds=data_bounds,
_n_items=n_lines, _n_vertices=self.vertex_count(pos=pos))
color = _get_array(color, (n_signals, 4),
PlotVisual.default_color,
dtype=np.float32,
)
assert color.shape == (n_signals, 4)
masks = _get_array(masks, (n_signals, 1), 1., np.float32)
# The mask is clu_idx + fractional mask
masks *= .99999
assert masks.shape == (n_signals, 1)
depth = _get_array(depth, (n_signals, 1), 0)
assert depth.shape == (n_signals, 1)
if data_bounds is not None:
data_bounds = _get_data_bounds(data_bounds, length=n_signals)
data_bounds = data_bounds.astype(np.float64)
assert data_bounds.shape == (n_signals, 4)
return Bunch(
x=x, y=y, color=color, depth=depth, data_bounds=data_bounds, masks=masks,
_n_items=n_signals, _n_vertices=self.vertex_count(y=y))
self, x=None, y=None, pos=None, color=None, depth=None,
data_bounds=None, **kwargs):
"""Validate the requested data before passing it to set_data()."""
if pos is None:
x, y = _get_pos(x, y)
pos = np.c_[x, y]
pos = np.asarray(pos)
assert pos.ndim == 2
assert pos.shape[1] == 2
n = pos.shape[0]
# Validate the data.
color = _get_array(color, (n, 4), ScatterVisual.default_color, dtype=np.float32)
depth = _get_array(depth, (n, 1), 0)
if data_bounds is not None:
data_bounds = _get_data_bounds(data_bounds, pos)
assert data_bounds.shape[0] == n
return Bunch(
pos=pos, color=color, depth=depth, data_bounds=data_bounds,
_n_items=n, _n_vertices=n)
x, y = _get_pos(x, y)
pos = np.c_[x, y]
pos = np.asarray(pos)
assert pos.ndim == 2
assert pos.shape[1] == 2
n = pos.shape[0]
masks = _get_array(masks, (n, 1), 1., np.float32)
assert masks.shape == (n, 1)
# The mask is clu_idx + fractional mask
masks *= .99999
# Validate the data.
if data_bounds is not None:
data_bounds = _get_data_bounds(data_bounds, pos)
assert data_bounds.shape[0] == n
return Bunch(pos=pos, masks=masks, data_bounds=data_bounds, _n_items=n, _n_vertices=n)