Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@classmethod
def translate_list(cls, val):
"""Translate list to scala Seq"""
escaped = ', '.join([cls.translate(v) for v in val])
return 'Seq({})'.format(escaped)
@classmethod
def comment(cls, cmt_str):
return '// {}'.format(cmt_str).strip()
@classmethod
def assign(cls, name, str_val):
return 'val {} = {}'.format(name, str_val)
class JuliaTranslator(Translator):
@classmethod
def translate_none(cls, val):
return 'nothing'
@classmethod
def translate_dict(cls, val):
escaped = ', '.join(
["{} => {}".format(cls.translate_str(k), cls.translate(v)) for k, v in val.items()]
)
return 'Dict({})'.format(escaped)
@classmethod
def translate_list(cls, val):
escaped = ', '.join([cls.translate(v) for v in val])
return '[{}]'.format(escaped)
@classmethod
def translate_list(cls, val):
"""Translate list to array"""
escaped = ', '.join([cls.translate(v) for v in val])
return 'new [] {{ {} }}'.format(escaped)
@classmethod
def comment(cls, cmt_str):
return '// {}'.format(cmt_str).strip()
@classmethod
def assign(cls, name, str_val):
return 'var {} = {};'.format(name, str_val)
class FSharpTranslator(Translator) :
@classmethod
def translate_none(cls, val) :
return 'None'
@classmethod
def translate_bool(cls, val) :
return 'true' if val else 'false'
@classmethod
def translate_int(cls, val):
strval = cls.translate_raw_str(val)
return strval + "L" if (val > 2147483647 or val < -2147483648) else strval
@classmethod
def translate_dict(cls, val):
def test(self):
nb_test1_fname = get_notebook_path('simple_execute.ipynb')
nb_test1_executed_fname = os.path.join(self.test_dir, 'test1_executed.ipynb')
execute_notebook(nb_test1_fname, nb_test1_executed_fname, {'msg': 'Hello'})
test_nb = read_notebook(nb_test1_executed_fname)
self.assertEqual(test_nb.node.cells[0].get('source'), u'# Parameters\nmsg = "Hello"\n')
self.assertEqual(test_nb.parameters, {'msg': 'Hello'})
def test(self):
path = get_notebook_path('broken.ipynb')
result_path = os.path.join(self.test_dir, 'broken.ipynb')
execute_notebook(path, result_path)
nb = read_notebook(result_path)
self.assertEqual(nb.node.cells[0].execution_count, 1)
self.assertEqual(nb.node.cells[1].execution_count, 2)
self.assertEqual(nb.node.cells[1].outputs[0].output_type, 'error')
self.assertEqual(nb.node.cells[2].execution_count, None)
def test_advanced_feature_transformations_explain_local():
notebookname = "advanced-feature-transformations-explain-local"
input_notebook = "notebooks/" + notebookname + ".ipynb"
output_notebook = "./test/" + notebookname + ".output.ipynb"
pm.execute_notebook(input_notebook, output_notebook)
nb = sb.read_notebook(input_notebook)
nb.scraps # print a dict of all scraps by name
return
def test_gensen_aml_deep_dive(notebooks):
notebook_path = notebooks["gensen_aml_deep_dive"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters=dict(
CACHE_DIR="./tests/integration/temp",
AZUREML_CONFIG_PATH="./tests/integration/.azureml",
UTIL_NLP_PATH="./utils_nlp",
MAX_EPOCH=1,
TRAIN_SCRIPT="./examples/sentence_similarity/gensen_train.py",
CONFIG_PATH="./examples/sentence_similarity/gensen_config.json",
MAX_TOTAL_RUNS=1,
MAX_CONCURRENT_RUNS=1,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert result["min_val_loss"] > 5
assert result["learning_rate"] >= 0.0001
def test_deep_and_unified_understanding(notebooks):
notebook_path = notebooks["deep_and_unified_understanding"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
sigma_numbers = [0.00317593, 0.00172284, 0.00634005, 0.00164305, 0.00317159]
sigma_bert = [0.1735696 , 0.14028822, 0.14590865, 0.2263149 , 0.20640415,
0.21249843, 0.18685372, 0.14112663, 0.25824168, 0.22399105,
0.2393731 , 0.12868434, 0.27386534, 0.35876372]
np.testing.assert_array_almost_equal(result["sigma_numbers"], sigma_numbers, decimal=3)
np.testing.assert_array_almost_equal(result["sigma_bert"], sigma_bert, decimal=1)
def test_03_notebook_run(classification_notebooks):
notebook_path = classification_notebooks["03_training_accuracy_vs_speed"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters=dict(PM_VERSION=pm.__version__),
kernel_name=KERNEL_NAME,
)
nb_output = sb.read_notebook(OUTPUT_NOTEBOOK)
assert len(nb_output.scraps["training_accuracies"].data) == 12
assert nb_output.scraps["training_accuracies"].data[-1] > 0.70
assert nb_output.scraps["validation_accuracy"].data > 0.70
def test_od_20_notebook_run(
detection_notebooks,
subscription_id,
resource_group,
workspace_name,
workspace_region,
):
notebook_path = detection_notebooks["20_deployment_on_kubernetes"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters=dict(
PM_VERSION=pm.__version__,
subscription_id=subscription_id,
resource_group=resource_group,
workspace_name=workspace_name,
workspace_region=workspace_region,
),
kernel_name=KERNEL_NAME,
)
def test_msrpc_runs(notebooks):
notebook_path = notebooks["msrpc"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
)