How to use the pandarallel._pandarallel._DataFrame.apply function in pandarallel

To help you get started, we’ve selected a few pandarallel examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github nalepae / pandarallel / pandarallel / _pandarallel.py View on Github external
print(f"New pandarallel memory created - Size: {shm_size_mb} MB")
        print(f"Pandarallel will run on {nb_workers} workers")

        if progress_bar:
            print("WARNING: Progress bar is an experimental feature. This \
can lead to a considerable performance loss.")
            tqdm_notebook().pandas()

        cls.__store_ctx = _plasma.start_plasma_store(int(shm_size_mb * 1e6))
        plasma_store_name, _ = cls.__store_ctx.__enter__()

        plasma_client = _plasma.connect(plasma_store_name)

        args = plasma_store_name, nb_workers, plasma_client

        _pd.DataFrame.parallel_apply = _DataFrame.apply(*args, progress_bar)
        _pd.DataFrame.parallel_applymap = _DataFrame.applymap(*args, progress_bar)

        _pd.Series.parallel_map = _Series.map(*args, progress_bar)
        _pd.Series.parallel_apply = _Series.apply(*args, progress_bar)

        _pd.core.window.Rolling.parallel_apply = _SeriesRolling.apply(*args, progress_bar)

        _pd.core.groupby.DataFrameGroupBy.parallel_apply = _DataFrameGroupBy.apply(*args)

        _pd.core.window.RollingGroupby.parallel_apply = _RollingGroupby.apply(*args)