Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main(sol='CBC'):
# Create the solver.
print('Solver: ', sol)
if sol == 'GLPK':
# using GLPK
solver = pywraplp.Solver('CoinsGridGLPK',
pywraplp.Solver.GLPK_MIXED_INTEGER_PROGRAMMING)
else:
# Using CBC
solver = pywraplp.Solver('CoinsGridCLP',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
#
# data
#
# max number of colors
# [we know that 4 suffices for normal maps]
nc = 5
# number of nodes
n = 11
# set of nodes
V = list(range(n))
num_edges = 20
def main(players, salaryCap):
solver = pywraplp.Solver('CoinsGridCLP', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
rangeC = range(len(players[0]))
rangePG = range(len(players[1]))
rangePF = range(len(players[2]))
rangeSG = range(len(players[3]))
rangeSF = range(len(players[4]))
takeC = [solver.IntVar(0, 1, 'takeC[%i]' % j) for j in rangeC]
takePG = [solver.IntVar(0, 1, 'takePG[%i]' % j) for j in rangePG]
takePF = [solver.IntVar(0, 1, 'takePF[%i]' % j) for j in rangePF]
takeSG = [solver.IntVar(0, 1, 'takeSG[%i]' % j) for j in rangeSG]
takeSF = [solver.IntVar(0, 1, 'takeSF[%i]' % j) for j in rangeSF]
teamsC = []
teamsPG = []
teamsPF = []
]
### Model problem.
# Generate all valid slabs (columns)
unsorted_valid_slabs = collect_valid_slabs_dp(capacities, colors, widths,
loss_array)
# Sort slab by descending load/loss. Remove duplicates.
valid_slabs = sorted(
unsorted_valid_slabs, key=lambda c: 1000 * c[-1] + c[-2])
all_valid_slabs = range(len(valid_slabs))
# create model and decision variables.
start_time = time.time()
solver = pywraplp.Solver('Steel',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
selected = [
solver.IntVar(0.0, 1.0, 'selected_%i' % i) for i in all_valid_slabs
]
for order in all_orders:
solver.Add(
sum(selected[i] for i in all_valid_slabs
if valid_slabs[i][order]) == 1)
# Redundant constraint (sum of loads == sum of widths).
solver.Add(
sum(selected[i] * valid_slabs[i][-1]
for i in all_valid_slabs) == sum(widths))
# Objective.
solver.Minimize(
def RunCBCMCLPexampleCppStyleAPI(p, SD):
if hasattr(pywraplp.Solver, 'CBC_MIXED_INTEGER_PROGRAMMING'):
###Announce('CBC', 'C++ style API')
RunMCLPexampleCppStyleAPI(pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING, p, SD)
return 0
def main():
# [START data]
data = create_data_model()
# [END data]
# [START solver]
# Create the mip solver with the CBC backend.
solver = pywraplp.Solver('simple_mip_program',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
# [END solver]
# [START variables]
infinity = solver.infinity()
x = {}
for j in range(data['num_vars']):
x[j] = solver.IntVar(0, infinity, 'x[%i]' % j)
print('Number of variables =', solver.NumVariables())
# [END variables]
# [START constraints]
for i in range(data['num_constraints']):
constraint = solver.RowConstraint(0, data['bounds'][i], '')
for j in range(data['num_vars']):
constraint.SetCoefficient(x[j], data['constraint_coeffs'][i][j])
print('Number of constraints =', solver.NumConstraints())
def RunAllPMedianExampleCppStyleAPI(p):
if hasattr(pywraplp.Solver, 'CBC_MIXED_INTEGER_PROGRAMMING'):
RunPMedianExampleCppStyleAPI(pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING, p)
# Normalize entries (components and isolates)
components_names = sorted(component.name for component in components)
nb_components = len(components_names)
isolates_names = sorted(map_isolates.keys())
# Compute boundaries
max_isolates = max(len(components_names), len(isolates_names)) + 1
# Prepare the incompatibility matrix
incompat_matrix = self.__make_incompatibility_matrix(components_names)
# Prepare the problem solver
solver = ortools.Solver("Components distribution",
ortools.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
# Declare variables
# ... component on isolate (Iso_i <=> Iso_i_j = 1)
iso = {}
for i, name in enumerate(components_names):
for j in range(max_isolates):
iso[i, j] = solver.IntVar(0, 1, "{0} on {1}".format(name, j))
# ... assigned isolats (for the objective)
assigned_isolates = [solver.IntVar(0, 1, "Isolate {0}".format(i))
for i in range(max_isolates)]
# ... number of isolates for a component (must be 1)
nb_component_isolate = [solver.Sum(iso[i, j]
for j in range(max_isolates))
def main(sol='CBC'):
# Create the solver.
print('Solver: ', sol)
if sol == 'GLPK':
# using GLPK
solver = pywraplp.Solver('CoinsGridGLPK',
pywraplp.Solver.GLPK_MIXED_INTEGER_PROGRAMMING)
else:
# Using CBC
solver = pywraplp.Solver('CoinsGridCLP',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
#
# data
#
n = 4
price = [50, 20, 30, 80] # in cents
limits = [500, 6, 10, 8] # requirements for each nutrition type
# nutritions for each product
calories = [400, 200, 150, 500]
chocolate = [3, 2, 0, 0]
sugar = [2, 2, 4, 4]
fat = [2, 4, 1, 5]
#
# declare variables
def main():
# [START solver]
# Create the mip solver with the CBC backend.
solver = pywraplp.Solver('simple_mip_program',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
# [END solver]
# [START variables]
infinity = solver.infinity()
# x and y are integer non-negative variables.
x = solver.IntVar(0.0, infinity, 'x')
y = solver.IntVar(0.0, infinity, 'y')
print('Number of variables =', solver.NumVariables())
# [END variables]
# [START constraints]
# x + 7 * y <= 17.5.
solver.Add(x + 7 * y <= 17.5)
# x <= 3.5.
def main(sol='CBC'):
# Create the solver.
print('Solver: ', sol)
# using GLPK
if sol == 'GLPK':
solver = pywraplp.Solver('CoinsGridGLPK',
pywraplp.Solver.GLPK_MIXED_INTEGER_PROGRAMMING)
else:
# Using CBC
solver = pywraplp.Solver('CoinsGridCBC',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
#
# data
#
n = 15
start = 0 # start node
end = 14 # end node
M = 999 # a large number
nodes = [
'8,0,0', # start
'5,0,3',
'5,3,0',
'2,3,3',
'2,5,1',
'7,0,1',