Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main():
global network_input_h, network_input_w
ie = IECore()
net = IENetwork(model = ir, weights = ir[:-3] + 'bin')
input_blob = next(iter(net.inputs))
output_blob = next(iter(net.outputs))
exec_net = ie.load_network(network = net, device_name = DEVICE)
n, c, network_input_h, network_input_w = net.inputs[input_blob].shape
# Read the image
validated_image = cv2.imread(validated_image_filename)
if validated_image is None:
print("Cannot read image.")
exit(1)
# Preprocess the image
preprocessed_image = preprocess_image(validated_image)
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Plugin initialization for specified device and load extensions library if specified
log.info("Creating Inference Engine")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# Read IR
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
log.info("Creating Inference Engine...")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# Read IR
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
def infer(image = '../../data/images/nps_electric_guitar.png', ir = '../../caffe/SqueezeNet/squeezenet_v1.0.xml', labels = '../../data/ilsvrc12/synset_words.txt', mean = None, top = 1):
####################### 1. Setup Plugin and Network #######################
# Select the myriad plugin and IRs to be used
ie = IECore()
net = IENetwork(model = ir, weights = ir[:-3] + 'bin')
# Set up the input and output blobs
input_blob = next(iter(net.inputs))
output_blob = next(iter(net.outputs))
input_shape = net.inputs[input_blob].shape
output_shape = net.outputs[output_blob].shape
# Display model information
display_info(input_shape, output_shape, image, ir, labels, mean)
# Load the network and get the network shape information
exec_net = ie.load_network(network = net, device_name = DEVICE)
n, c, h, w = input_shape
# Prepare Categories for age and gender networks
# Window properties
cv2.namedWindow(SSD_WINDOW_NAME, cv2.WINDOW_AUTOSIZE)
cv2.resizeWindow(SSD_WINDOW_NAME, (640, 360))
cv2.moveWindow(SSD_WINDOW_NAME, 10, 10)
# Detemine if using cam or image input
if ARGS.input == 'cam':
input_stream = 0
else:
input_stream = ARGS.input
assert os.path.isfile(ARGS.input), "Specified input file doesn't exist"
cap = cv2.VideoCapture(input_stream)
####################### 1. Setup Plugin and Network #######################
# Set up the inference engine core and load the IR files
ie = IECore()
net = IENetwork(model = ir, weights = ir[:-3] + 'bin')
# Get the input and output node names
input_blob = next(iter(net.inputs))
output_blob = next(iter(net.outputs))
# Get the input and output shapes from the input/output nodes
input_shape = net.inputs[input_blob].shape
output_shape = net.outputs[output_blob].shape
n, c, h, w = input_shape
x, y, detections_count, detections_size = output_shape
# Display model information
display_info(input_shape, output_shape, input_stream, ir, labels, show_display)
# Load the network and read a frame
print ("Welcome to Blindspot Assistance")
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
if (args.sounds):
soundWelcome = Thread(target = play, args = (path,'welcome.mp3'))
soundLeft = Thread(target = play, args = (path,'select_left.mp3'))
if args.sounds: soundWelcome.start()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
log.info("Creating Inference Engine...")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# Read IR
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
if args.sounds: soundWelcome.join()
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
def main():
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
log.info("Creating Inference Engine...")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
# ---------------------------------- 3. Load CPU extension for support specific layer ------------------------------
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
:param cpu_extension: extension for the CPU device
:param device: Target device
:param input_size: Number of input layers
:param output_size: Number of output layers
:param num_requests: Index of Infer request value. Limited to device capabilities.
:param plugin: Plugin for specified device
:return: Shape of input layer
"""
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Plugin initialization for specified device
# and load extensions library if specified
if not plugin:
log.info("Initializing plugin for {} device...".format(device))
self.plugin = IECore()
else:
self.plugin = plugin
if cpu_extension and 'CPU' in device:
self.plugin.add_extension(cpu_extension, "CPU")
# Read IR
log.info("Reading IR...")
self.net = IENetwork(model=model_xml, weights=model_bin)
log.info("Loading IR to the plugin...")
if "CPU" in device:
supported_layers = self.plugin.query_network(self.net, "CPU")
not_supported_layers = \
[l for l in self.net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
def main():
ie = IECore()
print("Available devices:")
for device in ie.available_devices:
print("\tDevice: {}".format(device))
print("\tMetrics:")
for metric in ie.get_metric(device, "SUPPORTED_METRICS"):
try:
metric_val = ie.get_metric(device, metric)
print("\t\t{}: {}".format(metric, param_to_string(metric_val)))
except TypeError:
print("\t\t{}: UNSUPPORTED TYPE".format(metric))
print("\n\tDefault values for device configuration keys:")
for cfg in ie.get_metric(device, "SUPPORTED_CONFIG_KEYS"):
try:
cfg_val = ie.get_config(device, cfg)
print("\t\t{}: {}".format(cfg, param_to_string(cfg_val)))