Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def load_act(path):
with open(path, "rb") as f:
model_data, act_params = cloudpickle.load(f)
act = deepq.build_act(**act_params)
sess = tf.Session()
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
load_variables(os.path.join(td, "model"))
return ActWrapper(act, act_params)
act, _, _, debug = deepq.build_train(
scope='deepq_act',
make_obs_ph=make_obs_ph,
q_func=q_func,
num_actions=env.action_space.n,
optimizer=tf.train.AdamOptimizer(learning_rate=lr),
gamma=gamma,
grad_norm_clipping=10, )
act_params = {
'make_obs_ph': make_obs_ph,
'q_func': q_func,
'num_actions': env.action_space.n, }
act = ActWrapper(act, act_params)
exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
initial_p=exploration_initial_eps,
final_p=exploration_final_eps)
U.initialize()
reward_shaper = ActionAdviceRewardShaper(config=config)
reward_shaper.load()
reward_shaper.generate_merged_demo()
full_exp_name = '{}-{}'.format(date.today().strftime('%Y%m%d'), experiment_name)
experiment_dir = os.path.join('experiments', full_exp_name)
os.makedirs(experiment_dir, exist_ok=True)
summary_dir = os.path.join(experiment_dir, 'summaries')