How to use the open3d.utility.set_verbosity_level function in open3d

To help you get started, we’ve selected a few open3d examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github StanfordVL / MinkowskiEngine / examples / modelnet40.py View on Github external
self.files = []
        self.cache = {}
        self.data_objects = []
        self.transform = transform
        self.voxel_size = config.voxel_size

        self.root = './ModelNet40'
        self.files = open(os.path.join(self.root,
                                       self.DATA_FILES[phase])).read().split()
        logging.info(
            f"Loading the subset {phase} from {self.root} with {len(self.files)} files"
        )
        self.density = 4000

        # Ignore warnings in obj loader
        o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
github chrischoy / FCGF / scripts / benchmark_3dmatch.py View on Github external
from model import load_model
from util.file import ensure_dir, get_folder_list, get_file_list
from util.trajectory import read_trajectory, write_trajectory
from util.pointcloud import make_open3d_point_cloud, evaluate_feature_3dmatch
from scripts.benchmark_util import do_single_pair_matching, gen_matching_pair, gather_results

import torch

import MinkowskiEngine as ME

ch = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
    format='%(asctime)s %(message)s', datefmt='%m/%d %H:%M:%S', handlers=[ch])

o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)


def extract_features_batch(model, config, source_path, target_path, voxel_size, device):

  folders = get_folder_list(source_path)
  f = open(os.path.join(target_path, "list.txt"), "w")
  timer, tmeter = Timer(), AverageMeter()
  num_feat = 0
  model.eval()

  for fo in folders:
    if 'evaluation' in fo:
      continue
    files = get_file_list(fo, ".ply")
    fo_base = os.path.basename(fo)
    f.write("%s %d\n" % (fo_base, len(files)))
github intel-isl / Open3D / examples / Python / Advanced / color_map_optimization.py View on Github external
# The MIT License (MIT)
# See license file or visit www.open3d.org for details

# examples/Python/Advanced/o3d.color_map.color_map_optimization.py

import open3d as o3d
from trajectory_io import *
import os, sys
sys.path.append("../Utility")
from file import *

path = "[path_to_fountain_dataset]"
debug_mode = False

if __name__ == "__main__":
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)

    # Read RGBD images
    rgbd_images = []
    depth_image_path = get_file_list(os.path.join(path, "depth/"),
                                     extension=".png")
    color_image_path = get_file_list(os.path.join(path, "image/"),
                                     extension=".jpg")
    assert (len(depth_image_path) == len(color_image_path))
    for i in range(len(depth_image_path)):
        depth = o3d.io.read_image(os.path.join(depth_image_path[i]))
        color = o3d.io.read_image(os.path.join(color_image_path[i]))
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
            color, depth, convert_rgb_to_intensity=False)
        if debug_mode:
            pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
                rgbd_image,
github intel-isl / TanksAndTemples / python_toolbox / evaluation / evaluation.py View on Github external
def write_color_distances(path, pcd, distances, max_distance):
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    # cmap = plt.get_cmap("afmhot")
    cmap = plt.get_cmap("hot_r")
    distances = np.array(distances)
    colors = cmap(np.minimum(distances, max_distance) / max_distance)[:, :3]
    pcd.colors = o3d.utility.Vector3dVector(colors)
    o3d.io.write_point_cloud(path, pcd)
github intel-isl / Open3D / examples / Python / ReconstructionSystem / optimize_posegraph.py View on Github external
def run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
                               max_correspondence_distance,
                               preference_loop_closure):
    # to display messages from o3d.registration.global_optimization
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    method = o3d.registration.GlobalOptimizationLevenbergMarquardt()
    criteria = o3d.registration.GlobalOptimizationConvergenceCriteria()
    option = o3d.registration.GlobalOptimizationOption(
        max_correspondence_distance=max_correspondence_distance,
        edge_prune_threshold=0.25,
        preference_loop_closure=preference_loop_closure,
        reference_node=0)
    pose_graph = o3d.io.read_pose_graph(pose_graph_name)
    o3d.registration.global_optimization(pose_graph, method, criteria, option)
    o3d.io.write_pose_graph(pose_graph_optimized_name, pose_graph)
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
github intel-isl / Open3D / examples / Python / ReconstructionSystem / refine_registration.py View on Github external
def run(config):
    print("refine rough registration of fragments.")
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    ply_file_names = get_file_list(
        join(config["path_dataset"], config["folder_fragment"]), ".ply")
    make_posegraph_for_refined_scene(ply_file_names, config)
    optimize_posegraph_for_refined_scene(config["path_dataset"], config)
github intel-isl / Open3D / examples / Python / Advanced / surface_reconstruction_ball_pivoting.py View on Github external
points = []
    normals = []
    for _ in range(4):
        for _ in range(4):
            pt = (np.random.uniform(-2, 2), np.random.uniform(-2, 2), 0)
            points.append(pt)
            normals.append((0, 0, 1))
    points = np.array(points, dtype=np.float64)
    normals = np.array(normals, dtype=np.float64)
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    pcd.normals = o3d.utility.Vector3dVector(normals)
    radii = [1, 2]
    yield pcd, radii

    o3d.utility.set_verbosity_level(o3d.utility.Info)

    gt_mesh = o3d.geometry.TriangleMesh.create_sphere()
    gt_mesh.compute_vertex_normals()
    pcd = gt_mesh.sample_points_poisson_disk(100)
    radii = [0.5, 1, 2]
    yield pcd, radii

    gt_mesh = meshes.bunny()
    gt_mesh.compute_vertex_normals()
    pcd = gt_mesh.sample_points_poisson_disk(2000)
    radii = [0.005, 0.01, 0.02, 0.04]
    yield pcd, radii

    gt_mesh = meshes.armadillo()
    gt_mesh.compute_vertex_normals()
    pcd = gt_mesh.sample_points_poisson_disk(2000)