How to use the numexpr.__version__ function in numexpr

To help you get started, weā€™ve selected a few numexpr examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github liam2 / liam2 / liam2 / main.py View on Github external
# we do not include PyQt because it is an indirect dependency. It might
        # be a good idea to include those too, but the list will get long in
        # that case.
        print("""
python {py}
larray {la}
numexpr {ne}
numpy {np}
pandas {pd}
pytables {pt}
pyyaml {yml}
bcolz {bc}
bottleneck {bn}
matplotlib {mpl}
vitables {vt}
""".format(py=py_version, la=la.__version__, ne=ne.__version__,
           np=np.__version__, pd=pd.__version__, pt=pt.__version__,
           yml=yaml.__version__,
           bc=bcolz_version, bn=bn_version, mpl=mpl_version, vt=vt_version,
           ))
        parser.exit()
github Blosc / bcolz / pavement.py View on Github external
pass

# Check for NumPy
check_import('numpy', min_numpy_version)

# Check for Numexpr
numexpr_here = False
try:
    import numexpr
except ImportError:
    print_warning("Numexpr not detected.  Disabling support for it.")
else:
    if numexpr.__version__ >= min_numexpr_version:
        numexpr_here = True
        print ( "* Found %(pkgname)s %(pkgver)s package installed."
                % {'pkgname': 'numexpr', 'pkgver': numexpr.__version__} )
    else:
        print_warning(
            "Numexpr %s detected, but version is not >= %s.  "
            "Disabling support for it." % (
            numexpr.__version__, min_numexpr_version))

########### End of version checks ##########

# carray version
VERSION = open('VERSION').read().strip()
# Create the version.py file
open('carray/version.py', 'w').write('__version__ = "%s"\n' % VERSION)


# Global variables
CFLAGS = os.environ.get('CFLAGS', '').split()
github pydata / numexpr / bench / timing.py View on Github external
experiments = [(setup1, expr1), (setup2, expr2), (setup3, expr3),
                   (setup4, expr4), (setup5, expr5), (setup5, expr6),
                   (setup5, expr7), (setup5, expr8), (setup5, expr9),
                   (setup5, expr10), (setup5, expr11), (setup5, expr12),
                   ]
    total = 0
    for params in experiments:
        total += compare_times(*params)
        print
    average = total / len(experiments)
    print("Average =", round(average, 2))
    return average

if __name__ == '__main__':
    import numexpr
    print("Numexpr version: ", numexpr.__version__)

    averages = []
    for i in range(iterations):
        averages.append(compare())
    print("Averages:", ', '.join("%.2f" % x for x in averages))
github Blosc / bcolz / bench / whereblocks.py View on Github external
from __future__ import print_function

import itertools
import numpy as np
import numexpr as ne
import bcolz
import time
import cProfile
import inspect

print("numexpr version:", ne.__version__)
bcolz.defaults.cparams['shuffle'] = bcolz.SHUFFLE
#bcolz.defaults.cparams['shuffle'] = bcolz.BITSHUFFLE
bcolz.defaults.cparams['cname'] = 'blosclz'
#bcolz.defaults.cparams['cname'] = 'lz4'
bcolz.defaults.cparams['clevel'] = 5
#bcolz.defaults.vm = "dask"
#bcolz.defaults.vm = "python"
bcolz.defaults.vm = "numexpr"

N = 1e8
LMAX = 1e3
npa = np.arange(N)
npb = np.arange(N)
ct = bcolz.ctable([npa, npb], names=["a", "b"])
github blaze / blaze / blaze / compute / elwise_eval.py View on Github external
if sys.version_info >= (3, 0):
    xrange = range
    def dict_viewkeys(d):
        return d.keys()
else:
    def dict_viewkeys(d):
        return d.iterkeys()

min_numexpr_version = '2.2'  # the minimum version of Numexpr needed
numexpr_here = False
try:
    import numexpr
except ImportError:
    pass
else:
    if numexpr.__version__ >= min_numexpr_version:
        numexpr_here = True

if numexpr_here:
    import numexpr
    from numexpr.expressions import functions as numexpr_functions


class Defaults(object):
    """Class to taylor the setters and getters of default values."""

    def __init__(self):
        self.choices = {}

        # Choices setup
        self.choices['vm'] = ("numexpr", "python")
github Blosc / bcolz / bcolz / __init__.py View on Github external
SHUFFLE = 1
BITSHUFFLE = 2

# Translation of filters to strings
filters = {NOSHUFFLE: "noshuffle",
           SHUFFLE: "shuffle",
           BITSHUFFLE: "bitshuffle"}

min_numexpr_version = '2.5.2'  # the minimum version of Numexpr needed
numexpr_here = False
try:
    import numexpr
except ImportError:
    pass
else:
    if parse_version(numexpr.__version__) >= parse_version(min_numexpr_version):
        numexpr_here = True

# Check for dask (as another virtual machine for chunked eval)
min_dask_version = '0.9.0'  # the minimum version of Numexpr needed
dask_here = False
try:
    import dask
except ImportError:
    pass
else:
    if parse_version(dask.__version__) >= parse_version(min_dask_version):
        dask_here = True

# Check for pandas (for data container conversion purposes)
pandas_here = False
try:
github bpteague / cytoflow / cytoflowgui / flow_task.py View on Github external
from sklearn import __version__ as skl_version
        from statsmodels import __version__ as stats_version
        from pyface import __version__ as pyf_version
        from envisage import __version__ as env_version
        from traits import __version__ as trt_version
        from traitsui import __version__ as trt_ui_version
        from yapf import __version__ as yapf_version
        from nbformat import __version__ as nb_version
        from yaml import __version__ as yaml_version
        
        return {"python" : sys.version,
                "cytoflow" : cf_version,
                "fcsparser" : fcs_version,
                "pandas" : pd_version,
                "numpy" : np_version,
                "numexpr" : nxp_version,
                "bottleneck" : btl_version,
                "seaborn" : sns_version,
                "matplotlib" : mpl_version,
                "scipy" : scipy_version,
                "scikit-learn" : skl_version,
                "statsmodels" : stats_version,
                "pyface" : pyf_version,
                "envisage" : env_version,
                "traits" : trt_version,
                "traitsui" : trt_ui_version,
                "nbformat" : nb_version,
                "yapf" : yapf_version,
                "yaml" : yaml_version}
github JinYang88 / atec_nlp_sim / pure / lib / python2.7 / site-packages / pandas / core / computation / check.py View on Github external
import warnings
from distutils.version import LooseVersion

_NUMEXPR_INSTALLED = False
_MIN_NUMEXPR_VERSION = "2.4.6"

try:
    import numexpr as ne
    ver = ne.__version__
    _NUMEXPR_INSTALLED = ver >= LooseVersion(_MIN_NUMEXPR_VERSION)

    if not _NUMEXPR_INSTALLED:
        warnings.warn(
            "The installed version of numexpr {ver} is not supported "
            "in pandas and will be not be used\nThe minimum supported "
            "version is {min_ver}\n".format(
                ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning)

except ImportError:  # pragma: no cover
    pass

__all__ = ['_NUMEXPR_INSTALLED']
github blaze / blaze / blaze / io / blz / chunked_eval.py View on Github external
if sys.version_info >= (3, 0):
    xrange = range
    def dict_viewkeys(d):
        return d.keys()
else:
    def dict_viewkeys(d):
        return d.iterkeys()

min_numexpr_version = '2.1'  # the minimum version of Numexpr needed
numexpr_here = False
try:
    import numexpr
except ImportError:
    pass
else:
    if numexpr.__version__ >= min_numexpr_version:
        numexpr_here = True
        from numexpr.expressions import functions as numexpr_functions


class Defaults(object):
    """Class to taylor the setters and getters of default values."""

    def __init__(self):
        self.choices = {}

        # Choices setup
        self.choices['eval_out_flavor'] = ("barray", "numpy")
        self.choices['eval_vm'] = ("numexpr", "python")

    def check_choices(self, name, value):
        if value not in self.choices[name]:
github pydata / numexpr / bench / vml_timing2.py View on Github external
print("NumPy version: %s" % (np.__version__,))

t0 = time()
z = 2*y + 4*x
t1 = time()
gbs = working_set_GB / (t1-t0)
print("Time for an algebraic expression:     %.3f s / %.3f GB/s" % (t1-t0, gbs))

t0 = time()
z = np.sin(x)**2 + np.cos(y)**2
t1 = time()
gbs = working_set_GB / (t1-t0)
print("Time for a transcendental expression: %.3f s / %.3f GB/s" % (t1-t0, gbs))

print("Numexpr version: %s. Using MKL: %s" % (ne.__version__, ne.use_vml))

t0 = time()
ne.evaluate('2*y + 4*x', out = z)
t1 = time()
gbs = working_set_GB / (t1-t0)
print("Time for an algebraic expression:     %.3f s / %.3f GB/s" % (t1-t0, gbs))

t0 = time()
ne.evaluate('sin(x)**2 + cos(y)**2', out = z)
t1 = time()
gbs = working_set_GB / (t1-t0)
print("Time for a transcendental expression: %.3f s / %.3f GB/s" % (t1-t0, gbs))