Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
options={'disp': True}
)
print res_bfgs.x
print "================"
print "Conjugate gradient"
res_cg = minimize(
logpdf,
[mu_0, std_0],
method='CG',
jac=der_logpdf,
options={'disp': True}
)
print res_cg
print "================"
decimals = 4
assert_almost_equal(res_nelder_mead.x[0], mu_after_ascent, places=decimals)
assert_almost_equal(res_nelder_mead.x[1], std_after_ascent, places=decimals)
assert_almost_equal(res_bfgs.x[0], mu_after_ascent, places=decimals)
assert_almost_equal(res_bfgs.x[1], std_after_ascent, places=decimals)
assert_almost_equal(res_cg.x[0], mu_after_ascent, places=decimals)
assert_almost_equal(res_cg.x[1], std_after_ascent, places=decimals)
def test_correlog():
psd = CORRELOGRAMPSD(marple_data, marple_data, lag=15)
assert_almost_equal(psd[0], 0.138216970)
assert_almost_equal(psd[1000-1], 7.900110787)
assert_almost_equal(psd[2000-1], 0.110103858)
assert_almost_equal(psd[3000-1], 0.222184134)
assert_almost_equal(psd[4000-1], -0.036255277)
assert_almost_equal(psd[4096-1], 0.1391839711)
return psd
def assert_correlates(m1, m2):
assert_almost_equal(pearsonr(m1.flatten(), m2.flatten())[0], 1,
places=14)
def test_mse_sparse_matrix_computed_ve(self):
human_scores = self.human_score_columns
df_humans = self.data_sparse[human_scores]
system = self.data_sparse['system']
expected_mse_true = 0.3550792
mse = mse_true(system,
df_humans)
assert_almost_equal(mse, expected_mse_true, 7)
40000.0: -88.62441475
},
10.0: {
0.0: -9.97267806,
1000.0: -10.46805022,
20000.0: -37.02915694,
40000.0: -177.24882949
}
}
for sldr in checks:
f = models.make_drag_descent(sldr)
for alt in checks[sldr]:
_a, _b, rate = f(0, 0, 0, alt)
assert_equal(_a, 0.0)
assert_equal(_b, 0.0)
assert_almost_equal(rate, checks[sldr][alt])
def test_levinson_real():
r = [5.0000, -1.5450, -3.9547, 3.9331, 1.4681, -4.7500]
A, E, K = LEVINSON(r)
assert_array_almost_equal(A, numpy.array([ 6.14739427e-01, 9.89813712e-01, 4.20968656e-04,
3.44472001e-03, -7.70967347e-03]))
assert_almost_equal(0.1791451516, E)
A, E,k = LEVINSON([1, 0.5,0.3],1)
for a1, a2 in zip(A, [-0.5]):
assert_almost_equal(a1, a2)
assert_almost_equal(E, 0.75)
A, E, K = LEVINSON([1,0.5,0.1,0.05])
assert_array_almost_equal(A, (array([-0.625, 0.275, -0.125])))
assert_array_almost_equal(E, 0.708749)
assert_array_almost_equal(K, array([-0.5 , 0.2 , -0.125]))
def test__div__(self):
r = self.m('1 2; 3 4') / self.m('5. 6.; 7. 8.')
assert_almost_equal(r[0, 0], .2)
assert_almost_equal(r[0, 1], .33333333)
assert_almost_equal(r[1, 0], 0.42857143)
assert_almost_equal(r[1, 1], .5)
def test_I(self):
inverse = self.m('1 2; 3 4').I
assert_almost_equal(inverse[0, 0], -2)
assert_almost_equal(inverse[0, 1], 1)
assert_almost_equal(inverse[1, 0], 1.5)
assert_almost_equal(inverse[1, 1], -.5)
def test_sc2():
s = D8C2()
filename = s.download_template('sc2')
df = s.score(filename, 'sc2')#
assert_almost_equal(df['SC_m']['bestPerformer'], 0.45085234093637499564)