Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import time
import nni
if __name__ == '__main__':
for i in range(5):
hyper_params = nni.get_next_parameter()
print('hyper_params:[{}]'.format(hyper_params))
if hyper_params is None:
break
nni.report_final_result(0.1*i)
time.sleep(3)
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import nni
import time
if __name__ == '__main__':
nni.get_next_parameter()
time.sleep(3)
nni.report_final_result(0.5)
# Licensed under the MIT license.
import time
import nni
params = nni.get_next_parameter()
print('params:', params)
x = params['x']
time.sleep(1)
for i in range(1, 10):
nni.report_intermediate_result(x ** i)
time.sleep(0.5)
nni.report_final_result(x ** 10)
args, _ = parser.parse_known_args()
try:
RCV_CONFIG = nni.get_next_parameter()
#RCV_CONFIG = {'lr': 0.1, 'optimizer': 'Adam', 'model':'senet18'}
_logger.debug(RCV_CONFIG)
prepare(RCV_CONFIG)
acc = 0.0
best_acc = 0.0
for epoch in range(start_epoch, start_epoch+args.epochs):
train(epoch)
acc, best_acc = test(epoch)
nni.report_intermediate_result(acc)
nni.report_final_result(best_acc)
except Exception as exception:
_logger.exception(exception)
raise
def train(args, params):
'''
Train model
'''
x_train, y_train, x_test, y_test = load_mnist_data(args)
model = create_mnist_model(params)
# nni
model.fit(x_train, y_train, batch_size=args.batch_size, epochs=args.epochs, verbose=1,
validation_data=(x_test, y_test), callbacks=[SendMetrics(), TensorBoard(log_dir=TENSORBOARD_DIR)])
_, acc = model.evaluate(x_test, y_test, verbose=0)
LOG.debug('Final result is: %d', acc)
nni.report_final_result(acc)
batch = mnist.train.next_batch(batch_num)
dropout_rate = nni.choice(1, 5, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images:
batch[0], mnist_network.labels: batch[1], mnist_network.
keep_prob: dropout_rate})
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(feed_dict={
mnist_network.images: mnist.test.images, mnist_network.
labels: mnist.test.labels, mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.
images: mnist.test.images, mnist_network.labels: mnist.test.
labels, mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
gbm = lgb.train(params,
lgb_train,
num_boost_round=20,
valid_sets=lgb_eval,
early_stopping_rounds=5)
print('Start predicting...')
# predict
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
# eval
rmse = mean_squared_error(y_test, y_pred) ** 0.5
print('The rmse of prediction is:', rmse)
nni.report_final_result(rmse)
y=y_train,
batch_size=args.batch_size,
validation_data=(x_test, y_test),
epochs=args.epochs,
shuffle=True,
callbacks=[
SendMetrics(),
EarlyStopping(min_delta=0.001, patience=10),
TensorBoard(log_dir=TENSORBOARD_DIR),
],
)
# trial report final acc to tuner
_, acc = net.evaluate(x_test, y_test)
logger.debug("Final result is: %.3f", acc)
nni.report_final_result(acc)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
file_name = 'train.tiny.csv'
target_name = 'Label'
id_index = 'Id'
# get parameters from tuner
RECEIVED_PARAMS = nni.get_next_parameter()
LOG.info("Received params:\n", RECEIVED_PARAMS)
# list is a column_name generate from tuner
df = pd.read_csv(file_name)
sample_col = RECEIVED_PARAMS['sample_feature']
# raw feaure + sample_feature
df = name2feature(df, sample_col, target_name)
feature_imp, val_score = lgb_model_train(df, _epoch = 1000, target_name = target_name, id_index = id_index)
nni.report_final_result({
"default":val_score,
"feature_importance":feature_imp
})