How to use the neuraxle.steps.numpy.MultiplyByN function in neuraxle

To help you get started, we’ve selected a few neuraxle examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Neuraxio / Neuraxle / testing / test_step_saving.py View on Github external
def test_resumable_pipeline_fit_should_save_all_fitted_pipeline_steps(tmpdir: LocalPath):
    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=2)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=4)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=6))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    p = p.fit(
        np.array(range(10)),
        np.array(range(10))
    )

    not_saved_paths = [create_some_step3_path(tmpdir)]
    saved_paths = [create_root_path(tmpdir), create_pipeline2_path(tmpdir), create_some_step1_path(tmpdir),
                   create_some_step2_path(tmpdir), create_some_checkpoint_path(tmpdir)]
github Neuraxio / Neuraxle / testing / test_step_saving.py View on Github external
def test_resumable_pipeline_fit_transform_should_save_all_fitted_pipeline_steps(tmpdir: LocalPath):
    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=2)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=4)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=6))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    p, outputs = p.fit_transform(
        np.array(range(10)),
        np.array(range(10))
    )

    not_saved_paths = [create_some_step3_path(tmpdir)]
    saved_paths = [create_root_path(tmpdir), create_pipeline2_path(tmpdir), create_some_step1_path(tmpdir),
                   create_some_step2_path(tmpdir), create_some_checkpoint_path(tmpdir)]
github Neuraxio / Neuraxle / testing / test_apply.py View on Github external
def test_apply_method_on_pipeline_with_meta_step_should_call_method_on_each_steps():
    pipeline = Pipeline([OutputTransformerWrapper(MultiplyByN(1)), MultiplyByN(1)])

    pipeline.apply_method(
        lambda step: step.set_hyperparams(HyperparameterSamples({'multiply_by': 2}))
    )

    assert pipeline.get_hyperparams()['multiply_by'] == 2
    assert pipeline['OutputTransformerWrapper'].wrapped.get_hyperparams()['multiply_by'] == 2
    assert pipeline['MultiplyByN'].get_hyperparams()['multiply_by'] == 2
github Neuraxio / Neuraxle / testing / test_step_saving.py View on Github external
(SOME_STEP_3, []),
    ]
    dump(pipeline_2, create_pipeline2_path(tmpdir, True))

    given_saved_some_step(multiply_by=2, name=SOME_STEP_1, path=create_some_step1_path(tmpdir, True))
    given_saved_some_step(multiply_by=4, name=SOME_STEP_2, path=create_some_step2_path(tmpdir, True))
    given_saved_some_step(multiply_by=6, name=SOME_STEP_3, path=create_some_step3_path(tmpdir, True))

    checkpoint = DefaultCheckpoint()
    checkpoint.name = CHECKPOINT
    dump(checkpoint, create_some_checkpoint_path(tmpdir, True))

    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=1)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=1)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=1))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    return p
github Neuraxio / Neuraxle / testing / test_apply.py View on Github external
def test_apply_method_on_pipeline_with_meta_step_and_positional_argument_should_call_method_on_each_steps():
    pipeline = Pipeline([OutputTransformerWrapper(MultiplyByN(1)), MultiplyByN(1)])

    pipeline.apply_method(
        lambda step, hyperparams: step.set_hyperparams(hyperparams),
        hyperparams=HyperparameterSamples({'multiply_by': 2})
    )

    assert pipeline.get_hyperparams()['multiply_by'] == 2
    assert pipeline['OutputTransformerWrapper'].wrapped.get_hyperparams()['multiply_by'] == 2
    assert pipeline['MultiplyByN'].get_hyperparams()['multiply_by'] == 2
github Neuraxio / Neuraxle / testing / test_apply.py View on Github external
def test_apply_on_pipeline_with_meta_step_and_positional_argument_should_call_method_on_each_steps():
    pipeline = Pipeline([OutputTransformerWrapper(MultiplyByN(1)), MultiplyByN(1)])

    pipeline.apply('set_hyperparams', hyperparams=HyperparameterSamples({'multiply_by': 2}))

    assert pipeline.get_hyperparams()['multiply_by'] == 2
    assert pipeline['OutputTransformerWrapper'].wrapped.get_hyperparams()['multiply_by'] == 2
    assert pipeline['MultiplyByN'].get_hyperparams()['multiply_by'] == 2
github Neuraxio / Neuraxle / examples / auto_ml_checkpoint.py View on Github external
def main(tmpdir, sleep_time: float = 0, n_iter: int = 10):
    DATA_INPUTS = np.array(range(100))
    EXPECTED_OUTPUTS = np.array(range(100, 200))

    HYPERPARAMETER_SPACE = HyperparameterSpace({
        'multiplication_1__multiply_by': RandInt(1, 2),
        'multiplication_2__multiply_by': RandInt(1, 2),
        'multiplication_3__multiply_by': RandInt(1, 2),
    })

    print('Classic Pipeline:')

    pipeline = Pipeline([
        ('multiplication_1', MultiplyByN()),
        ('sleep_1', ForEachDataInput(Sleep(sleep_time))),
        ('multiplication_2', MultiplyByN()),
        ('sleep_2', ForEachDataInput(Sleep(sleep_time))),
        ('multiplication_3', MultiplyByN()),
    ]).set_hyperparams_space(HYPERPARAMETER_SPACE)

    time_a = time.time()
    best_model = RandomSearch(
        pipeline,
        n_iter=n_iter,
        higher_score_is_better=True
    ).fit(DATA_INPUTS, EXPECTED_OUTPUTS)
    outputs = best_model.transform(DATA_INPUTS)
    time_b = time.time()

    actual_score = mean_squared_error(EXPECTED_OUTPUTS, outputs)
    print('{0} seconds'.format(time_b - time_a))
    print('output: {0}'.format(outputs))
github Neuraxio / Neuraxle / examples / inverse_transform.py View on Github external
def main():
    p = Pipeline([MultiplyByN(multiply_by=2)])

    data_inputs = np.array([1, 2])
    generated_outputs = p.transform(data_inputs)
    regenerated_inputs = reversed(p).transform(generated_outputs)

    assert np.array_equal(regenerated_inputs, data_inputs)
    assert np.array_equal(generated_outputs, 2 * data_inputs)
github Neuraxio / Neuraxle / examples / hyperparams.py View on Github external
def main():
    p = Pipeline([
        ('step1', MultiplyByN()),
        ('step2', MultiplyByN()),
        Pipeline([
            Identity(),
            Identity(),
            SKLearnWrapper(PCA(n_components=4))
        ])
    ])

    p.set_hyperparams_space(HyperparameterSpace({
        'step1__multiply_by': RandInt(42, 50),
        'step2__multiply_by': RandInt(-10, 0),
        'Pipeline__SKLearnWrapper_PCA__n_components': RandInt(2, 3)
    }))

    samples = p.get_hyperparams_space().rvs()
    p.set_hyperparams(samples)