How to use the nengo.utils.distributions.Uniform function in nengo

To help you get started, we’ve selected a few nengo examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github hunse / nef-rbm / deep-auto.py View on Github external
def __init__(self, vis_shape, n_hid,
                 encoders=None,
                 # intercepts=dists.Uniform(-1, 1),
                 intercepts=dists.Uniform(-0.5, -0.5),
                 # max_rates=dists.Uniform(150, 250),
                 # max_rates=dists.Uniform(1, 1),
                 max_rate=200,
                 mask=None, rf_shape=None, seed=None):

        if seed is None:
            seed = np.random.randint(2**31 - 1)

        vis_shape = vis_shape if isinstance(vis_shape, tuple) else (vis_shape,)
        n_vis = np.prod(vis_shape)

        rng = np.random.RandomState(seed=seed)

        # create initial parameters
        if encoders is None:
            encoders = rng.normal(size=(n_hid, n_vis))
github hunse / nef-rbm / sigmoid-rbm / find_neuron_params.py View on Github external
def encoders_rates_intercepts(seed):
    rng = np.random.RandomState(seed)
    # encoders = UniformHypersphere(1, surface=True).sample(N, rng)
    # intercepts = Uniform(-1, 1).sample(N, rng)
    encoders = np.ones((N, 1))
    intercepts = Uniform(-0.5, 0.8).sample(N, rng=rng)
    max_rates = Uniform(200, 400).sample(N, rng=rng)
    return encoders, max_rates, intercepts
github hunse / nef-rbm / sigmoid-rbm / find_neuron_params.py View on Github external
def encoders_rates_intercepts(seed):
    rng = np.random.RandomState(seed)
    # encoders = UniformHypersphere(1, surface=True).sample(N, rng)
    # intercepts = Uniform(-1, 1).sample(N, rng)
    encoders = np.ones((N, 1))
    intercepts = Uniform(-0.5, 0.8).sample(N, rng=rng)
    max_rates = Uniform(200, 400).sample(N, rng=rng)
    return encoders, max_rates, intercepts