Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if cell.cell_type == 'code':
lines = cell.source.split('\n')
for l in lines:
if l.strip().startswith('#'): # it's a comment
continue
m = lib1_re.search(l)
if not m:
m = lib2_re.search(l)
if m and m[1] in lib_dict:
find_libs.append(m[1])
if not find_libs:
return None
install_str = ''
for lib in set(find_libs):
install_str += '!pip install ' + lib_dict[lib] + '\n'
return nbformat.v4.new_code_cell(source=install_str)
numpoints=1, #number of points
bbox_to_anchor=(0.5,1), #anchor against the figure axes; this anchor pins the lower center point to x=half axis and y=full axis
fontsize=smallfont,
)
if not (lgd is None): #lgd is None if there are no labeled lines
lgd.get_frame().set_alpha(0.5) #translucent legend
""")
codelist.append("""\
plt.savefig("%s", bbox_inches="tight")
plt.show()
""" % nbfigname)
code=""
for codeitem in codelist:
code = code + codeitem + "\n"
nb = nbf.v4.new_notebook()
nb['cells'] = [nbf.v4.new_code_cell(code)]
with open(nbname, 'w', encoding="utf-8") as f:
nbf.write(nb, f)
return
"""
trials, metric = self._check_input(inputs, **kwargs)
notebook_cells = []
commands = ['from taucmdr.analysis.analyses.runtime_breakdown_bqplot import BqplotRuntimeBreakdownVisualizer',
'from taucmdr.model.trial import Trial',
'from taucmdr.cf.storage.levels import ANALYSIS_STORAGE',
inspect.getsource(show_bqplot_runtime_breakdown)]
def_cell_source = "\n".join(commands)
notebook_cells.append(nbformat.v4.new_code_cell(def_cell_source))
trials_list_str = "Trial.controller(ANALYSIS_STORAGE).search_hash([%s])" % (",".join(
['"%s"' % trial.hash_digest() for trial in trials]))
if interactive:
show_plot_str = self.get_interaction_code(inputs, 'show_bqplot_runtime_breakdown', *args, **kwargs)
else:
show_plot_str = 'show_bqplot_runtime_breakdown(%s, "%s")' % (trials_list_str, metric)
notebook_cells.append(nbformat.v4.new_code_cell(show_plot_str))
return notebook_cells
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from xgboost import plot_importance
from collections import Counter
import matplotlib.pyplot as plt
from sklearn import metrics
import seaborn as sns
import xgboost as xgb
import pandas as pd
import numpy as np
import itertools"""
self.nb['cells'].append(nbformat.v4.new_code_cell(code).replace("\t",""))
cells.append(nbf.new_code_cell(
generate_imports_cell(json_data, interactive_backend=True)))
# Create Model Cell
cells.append(nbf.new_code_cell(generate_model_cell(json_data, name)))
# Instantiate Model Cell
cells.append(nbf.new_code_cell('model = {0}()'.format(name)))
# Sciope Wrapper Cell
cells.append(nbf.new_code_cell(generate_sciope_wrapper_cell(json_data)))
# Sciope lhc Cell
cells.append(nbf.new_code_cell(generate_sciope_lhc_cell()))
# Sciope stochmet Cell
cells.append(nbf.new_code_cell(generate_sciope_stochmet_cell()))
# Sciope Parameter Sweep Run Cell
cells.append(nbf.new_code_cell(generate_sciope_psweep_run_cell()))
# Sciope Configure MET DATA
cells.append(nbf.new_code_cell(generate_sciope_res_conf_cell()))
# Sciope MET Explore Cell
cells.append(nbf.new_code_cell(generate_sciope_met_explore_cell()))
# Sciope Supervised Training Cell
cells.append(nbf.new_code_cell(generate_sciope_supervised_train_cell()))
# Sciope Map Labels Cell
cells.append(nbf.new_code_cell(generate_sciope_map_labels_cell()))
# Sciope Explore Model Cell
cells.append(nbf.new_code_cell(generate_sciope_explore_model_cell()))
# Sciope Set Labels Cell
cells.append(nbf.new_code_cell(generate_sciope_set_labels_cell()))
except KeyError as err:
raise JSONFileNotModelError("Could not convert your model {}: {}".format(json_data, str(err)))
# Append cells to worksheet
nb = nbf.new_notebook(cells=cells)
# Open and write to file
Returns:
list of :obj:`nbformat.NotebookNode`: The cells which show the barplot.
Raises:
ConfigurationError: The provided models are not Trials
"""
trials, metric = self._check_input(inputs, **kwargs)
notebook_cells = []
commands = ['from taucmdr.analysis.analyses.trial_barplot import TrialBarPlotVisualizer',
'from taucmdr.model.trial import Trial',
'from taucmdr.cf.storage.levels import ANALYSIS_STORAGE',
inspect.getsource(run_trial_bar_plot),
inspect.getsource(show_trial_bar_plot)]
def_cell_source = "\n".join(commands)
notebook_cells.append(nbformat.v4.new_code_cell(def_cell_source))
for trial in trials:
if interactive:
notebook_cells.append(nbformat.v4.new_code_cell(
self.get_interaction_code(inputs, 'show_trial_bar_plot', **kwargs)))
else:
digest = trial.hash_digest()
notebook_cells.append(nbformat.v4.new_code_cell(
'show_trial_bar_plot(Trial.controller(ANALYSIS_STORAGE).search_hash("%s")[0], "%s")'
% (digest, metric)))
return notebook_cells
def to_cell(self):
return nbv.new_code_cell(self._text)
def execute_retroactive_scaffold(notebook_path):
nb = load_notebook_node(notebook_path)
new_nb = copy.deepcopy(nb)
import_cell_source = 'import dagstermill'
import_cell = nbformat.v4.new_code_cell(source=import_cell_source)
parameters_cell_source = 'context = dagstermill.get_context()'
parameters_cell = nbformat.v4.new_code_cell(source=parameters_cell_source)
parameters_cell.metadata['tags'] = ['parameters']
new_nb.cells = [import_cell, parameters_cell] + nb.cells
write_ipynb(new_nb, notebook_path)