How to use the napari.utils.misc.ensure_iterable function in napari

To help you get started, we’ve selected a few napari examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github napari / napari / napari / layers / shapes / shapes.py View on Github external
z_index = z_index or 0

        if len(data) > 0:
            if np.array(data[0]).ndim == 1:
                # If a single array for a shape has been passed turn into list
                data = [data]

            # Turn input arguments into iterables
            shape_inputs = zip(
                data,
                ensure_iterable(shape_type),
                ensure_iterable(edge_width),
                ensure_iterable(edge_color, color=True),
                ensure_iterable(face_color, color=True),
                ensure_iterable(opacity),
                ensure_iterable(z_index),
            )

            for d, st, ew, ec, fc, o, z in shape_inputs:

                # A False slice_key means the shape is invalid as it is not
                # confined to a single plane
                shape_cls = shape_classes[ShapeType(st)]
                shape = shape_cls(
                    d,
                    edge_width=ew,
                    edge_color=ec,
                    face_color=fc,
                    opacity=o,
                    z_index=z,
                    dims_order=self.dims.order,
                    ndisplay=self.dims.ndisplay,
github napari / napari / napari / layers / shapes / shapes.py View on Github external
else:
            z_index = z_index or 0

        if len(data) > 0:
            if np.array(data[0]).ndim == 1:
                # If a single array for a shape has been passed turn into list
                data = [data]

            # Turn input arguments into iterables
            shape_inputs = zip(
                data,
                ensure_iterable(shape_type),
                ensure_iterable(edge_width),
                ensure_iterable(edge_color, color=True),
                ensure_iterable(face_color, color=True),
                ensure_iterable(opacity),
                ensure_iterable(z_index),
            )

            for d, st, ew, ec, fc, o, z in shape_inputs:

                # A False slice_key means the shape is invalid as it is not
                # confined to a single plane
                shape_cls = shape_classes[ShapeType(st)]
                shape = shape_cls(
                    d,
                    edge_width=ew,
                    edge_color=ec,
                    face_color=fc,
                    opacity=o,
                    z_index=z,
                    dims_order=self.dims.order,
github napari / napari / napari / layers / shapes / shapes.py View on Github external
if self._data_view is not None:
            z_index = z_index or max(self._data_view._z_index, default=-1) + 1
        else:
            z_index = z_index or 0

        if len(data) > 0:
            if np.array(data[0]).ndim == 1:
                # If a single array for a shape has been passed turn into list
                data = [data]

            # Turn input arguments into iterables
            shape_inputs = zip(
                data,
                ensure_iterable(shape_type),
                ensure_iterable(edge_width),
                ensure_iterable(edge_color, color=True),
                ensure_iterable(face_color, color=True),
                ensure_iterable(opacity),
                ensure_iterable(z_index),
            )

            for d, st, ew, ec, fc, o, z in shape_inputs:

                # A False slice_key means the shape is invalid as it is not
                # confined to a single plane
                shape_cls = shape_classes[ShapeType(st)]
                shape = shape_cls(
                    d,
                    edge_width=ew,
                    edge_color=ec,
                    face_color=fc,
                    opacity=o,
github napari / napari / napari / layers / points / points.py View on Github external
# Full data indices of points located in the currently viewed slice
        self._indices_view = []

        self._drag_box = None
        self._drag_box_stored = None
        self._is_selecting = False
        self._clipboard = {}

        self.edge_colors = list(
            itertools.islice(
                ensure_iterable(edge_color, color=True), 0, len(self.data)
            )
        )
        self.face_colors = list(
            itertools.islice(
                ensure_iterable(face_color, color=True), 0, len(self.data)
            )
        )
        self.sizes = size

        # Trigger generation of view slice and thumbnail
        self._update_dims()
github napari / napari / napari / components / viewer_model.py View on Github external
n_channels = data[0].shape[channel_axis]
            else:
                n_channels = data.shape[channel_axis]

            name = ensure_iterable(name)

            if blending is None:
                blending = 'additive'

            if colormap is None:
                if n_channels < 3:
                    colormap = colormaps.MAGENTA_GREEN
                else:
                    colormap = itertools.cycle(colormaps.CYMRGB)
            else:
                colormap = ensure_iterable(colormap)

            # If one pair of clim values is passed then need to iterate them to
            # all layers.
            if contrast_limits is not None and not is_iterable(
                contrast_limits[0]
            ):
                contrast_limits = itertools.repeat(contrast_limits)
            else:
                contrast_limits = ensure_iterable(contrast_limits)

            gamma = ensure_iterable(gamma)

            layer_list = []
            zipped_args = zip(
                range(n_channels), colormap, contrast_limits, gamma, name
            )
github napari / napari / napari / layers / shapes / shapes.py View on Github external
z_index = z_index or max(self._data_view._z_index, default=-1) + 1
        else:
            z_index = z_index or 0

        if len(data) > 0:
            if np.array(data[0]).ndim == 1:
                # If a single array for a shape has been passed turn into list
                data = [data]

            # Turn input arguments into iterables
            shape_inputs = zip(
                data,
                ensure_iterable(shape_type),
                ensure_iterable(edge_width),
                ensure_iterable(edge_color, color=True),
                ensure_iterable(face_color, color=True),
                ensure_iterable(opacity),
                ensure_iterable(z_index),
            )

            for d, st, ew, ec, fc, o, z in shape_inputs:

                # A False slice_key means the shape is invalid as it is not
                # confined to a single plane
                shape_cls = shape_classes[ShapeType(st)]
                shape = shape_cls(
                    d,
                    edge_width=ew,
                    edge_color=ec,
                    face_color=fc,
                    opacity=o,
                    z_index=z,
github napari / napari / napari / layers / shapes / shapes.py View on Github external
opacity = self.opacity
        if self._data_view is not None:
            z_index = z_index or max(self._data_view._z_index, default=-1) + 1
        else:
            z_index = z_index or 0

        if len(data) > 0:
            if np.array(data[0]).ndim == 1:
                # If a single array for a shape has been passed turn into list
                data = [data]

            # Turn input arguments into iterables
            shape_inputs = zip(
                data,
                ensure_iterable(shape_type),
                ensure_iterable(edge_width),
                ensure_iterable(edge_color, color=True),
                ensure_iterable(face_color, color=True),
                ensure_iterable(opacity),
                ensure_iterable(z_index),
            )

            for d, st, ew, ec, fc, o, z in shape_inputs:

                # A False slice_key means the shape is invalid as it is not
                # confined to a single plane
                shape_cls = shape_classes[ShapeType(st)]
                shape = shape_cls(
                    d,
                    edge_width=ew,
                    edge_color=ec,
                    face_color=fc,