How to use the mxnet.gluon.nn function in mxnet

To help you get started, we’ve selected a few mxnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github hpi-xnor / BMXNet-v2 / tests / python / mkl / test_mkldnn.py View on Github external
def test_mkldnn_ndarray_slice():
    ctx = mx.cpu()
    net = gluon.nn.HybridSequential()
    with net.name_scope():
        net.add(gluon.nn.Conv2D(channels=32, kernel_size=3, activation=None))
    net.collect_params().initialize(ctx=ctx)
    x = mx.nd.array(np.ones([32, 3, 224, 224]), ctx)
    y = net(x)

    # trigger computation on ndarray slice
    assert_almost_equal(y[0].asnumpy()[0, 0, 0], 0.3376348)
github osmr / imgclsmob / gluon / gluoncv2 / models / seresnext.py View on Github external
in_channels = init_block_channels
            for i, channels_per_stage in enumerate(channels):
                stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
                with stage.name_scope():
                    for j, out_channels in enumerate(channels_per_stage):
                        strides = 2 if (j == 0) and (i != 0) else 1
                        stage.add(SEResNeXtUnit(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            strides=strides,
                            cardinality=cardinality,
                            bottleneck_width=bottleneck_width,
                            bn_use_global_stats=bn_use_global_stats))
                        in_channels = out_channels
                self.features.add(stage)
            self.features.add(nn.AvgPool2D(
                pool_size=7,
                strides=1))

            self.output = nn.HybridSequential(prefix="")
            self.output.add(nn.Flatten())
            self.output.add(nn.Dense(
                units=classes,
                in_units=in_channels))
github osmr / imgclsmob / gluon / gluoncv2 / models / darts.py View on Github external
stage.add(DartsUnit(
                        in_channels=in_channels,
                        prev_in_channels=prev_in_channels,
                        out_channels=out_channels,
                        genotype=genotype,
                        reduction=reduction,
                        prev_reduction=prev_reduction))
                    prev_in_channels = in_channels
                    in_channels = out_channels
                self.features.add(stage)
            self.features.add(nn.AvgPool2D(
                pool_size=7,
                strides=1))

            self.output = nn.HybridSequential(prefix="")
            self.output.add(nn.Flatten())
            self.output.add(nn.Dense(
                units=classes,
                in_units=in_channels))
github dmlc / gluon-nlp / scripts / parsing / parser / biaffine_parser.py View on Github external
def embedding_from_numpy(_we, trainable=True):
            word_embs = nn.Embedding(_we.shape[0], _we.shape[1],
                                     weight_initializer=mx.init.Constant(_we))
            apply_weight_drop(word_embs, 'weight', dropout_dim, axes=(1,))
            if not trainable:
                word_embs.collect_params().setattr('grad_req', 'null')
            return word_embs
github ailab26 / pfld-lite / models / CPFLD.py View on Github external
LinearBottleneck(in_channels=128, channels=128, t=4, alpha=alpha, stride=1)
        )
        ## mobilenet-v2, t=2, c=16, n=1, s=1
        self.lmks_net.add(
            LinearBottleneck(in_channels=128, channels=16, t=2, alpha=alpha, stride=1),
        )
        ## landmarks regression: base line
        self.s2_conv = nn.Conv2D(channels=32, kernel_size=(3,3), strides=(2,2), padding=(1,1), activation=None, use_bias=True)
        self.s2_bn   = nn.BatchNorm(scale=True)
        self.s2_act  = nn.Activation('relu')
        self.s3_conv = nn.Conv2D(channels=128, kernel_size=(3,3), strides=(2,2), padding=(1,1), activation=None, use_bias=True)
        self.s3_bn   = nn.BatchNorm(scale=True)
        self.s3_act  = nn.Activation('relu')
        

        self.lmks_out = nn.HybridSequential()
        self.lmks_out.add(
            nn.Conv2D(channels=num_of_pts*2, kernel_size=(3,3), strides=(1,1), padding=(0,0)),
        )
github ijkguo / mx-rcnn / ndnet / net_resnet_v2a.py View on Github external
def __init__(self, layers, **kwargs):
        super(ResNetV2a, self).__init__(**kwargs)
        with self.name_scope():
            self.layer0 = nn.HybridSequential(prefix='')
            self.layer0.add(nn.BatchNorm(scale=False, epsilon=2e-5, use_global_stats=True))
            self.layer0.add(nn.Conv2D(64, 7, 2, 3, use_bias=False))
            self.layer0.add(nn.BatchNorm(epsilon=2e-5, use_global_stats=True))
            self.layer0.add(nn.Activation('relu'))
            self.layer0.add(nn.MaxPool2D(3, 2, 1))

            self.layer1 = self._make_layer(stage_index=1, layers=layers[0], in_channels=64, channels=256, stride=1)
            self.layer2 = self._make_layer(stage_index=2, layers=layers[1], in_channels=256, channels=512, stride=2)
            self.layer3 = self._make_layer(stage_index=3, layers=layers[2], in_channels=512, channels=1024, stride=2)
            self.layer4 = self._make_layer(stage_index=4, layers=layers[3], in_channels=1024, channels=2048, stride=2)

            self.layer4.add(nn.BatchNorm(epsilon=2e-5, use_global_stats=True))
            self.layer4.add(nn.Activation('relu'))
github osmr / imgclsmob / gluon / gluoncv2 / models / resnet.py View on Github external
bn_use_global_stats=bn_use_global_stats,
                    conv1_stride=conv1_stride)
            else:
                self.body = ResBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    strides=strides,
                    bn_use_global_stats=bn_use_global_stats)
            if self.resize_identity:
                self.identity_conv = conv1x1_block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    strides=strides,
                    bn_use_global_stats=bn_use_global_stats,
                    activation=None)
            self.activ = nn.Activation("relu")
github NervanaSystems / coach / rl_coach / architectures / mxnet_components / layers.py View on Github external
def __call__(self):
        """
        returns a list of mxnet batchnorm, activation and dropout layers
        :return: batchnorm, activation and dropout layers
        """
        block = nn.HybridSequential()
        if self.batchnorm:
            block.add(nn.BatchNorm())
        if self.activation_function:
            block.add(nn.Activation(activation=utils.get_mxnet_activation_name(self.activation_function)))
        if self.dropout_rate:
            block.add(nn.Dropout(self.dropout_rate))
        return block
github osmr / imgclsmob / gluon / gluoncv2 / models / diracnetv2.py View on Github external
def __init__(self,
                 channels,
                 init_block_channels,
                 in_channels=3,
                 in_size=(224, 224),
                 classes=1000,
                 **kwargs):
        super(DiracNetV2, self).__init__(**kwargs)
        self.in_size = in_size
        self.classes = classes

        with self.name_scope():
            self.features = nn.HybridSequential(prefix="")
            self.features.add(DiracInitBlock(
                in_channels=in_channels,
                out_channels=init_block_channels))
            in_channels = init_block_channels
            for i, channels_per_stage in enumerate(channels):
                stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
                with stage.name_scope():
                    for j, out_channels in enumerate(channels_per_stage):
                        stage.add(dirac_conv3x3(
                            in_channels=in_channels,
                            out_channels=out_channels))
                        in_channels = out_channels
                    if i != len(channels) - 1:
                        stage.add(nn.MaxPool2D(
                            pool_size=2,
                            strides=2,