Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def initNativeConfig(self):
atrs = self.all
self.nativeConfig = Config.fromfile(self.getNativeConfigPath())
cfg = self.nativeConfig
cfg.gpus = self.gpus
wd = os.path.dirname(self.path)
cfg.work_dir = wd
if 'bbox_head' in cfg.model and hasattr(atrs,'classes'):
setCfgAttr(cfg.model.bbox_head, 'num_classes', atrs['classes']+1)
if 'mask_head' in cfg.model and hasattr(atrs,'classes'):
setCfgAttr(cfg.model.mask_head, 'num_classes', atrs['classes']+1)
cfg.load_from = self.getWeightsPath()
cfg.model.pretrained = self.getWeightsPath()
cfg.total_epochs = None # need to have more epoch then the checkpoint has been generated for
cfg.data.imgs_per_gpu = max(1, self.batch // cfg.gpus)# batch size
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
# reorganize stpp
num_classes = (cfg.model.cls_head.num_classes -
1 if cfg.model.cls_head.with_bg
else cfg.model.cls_head.num_classes)
stpp_feat_multiplier = 0
for stpp_subcfg in cfg.model.segmental_consensus.stpp_cfg:
_, mult = parse_stage_config(stpp_subcfg)
stpp_feat_multiplier += mult
cfg.model.segmental_consensus = dict(
type="STPPReorganized",
standalong_classifier=cfg.model.
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
if cfg.data.test.oversample == 'three_crop':
cfg.model.spatial_temporal_module.spatial_size = 8
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
if args.gpus == 1:
model = build_recognizer(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
load_checkpoint(model, args.checkpoint, strict=True)
model = MMDataParallel(model, device_ids=[0])
data_loader = build_dataloader(
def main():
parser = ArgumentParser(description='VOC Evaluation')
parser.add_argument('result', help='result file path')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--iou-thr',
type=float,
default=0.5,
help='IoU threshold for evaluation')
args = parser.parse_args()
cfg = mmcv.Config.fromfile(args.config)
test_dataset = mmcv.runner.obj_from_dict(cfg.data.test, datasets)
voc_eval(args.result, test_dataset, args.iou_thr)
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
logger = get_logger(cfg.log_level)
# init distributed environment if necessary
if args.launcher == 'none':
dist = False
logger.info('Disabled distributed training.')
else:
dist = True
init_dist(**cfg.dist_params)
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
if rank != 0:
logger.setLevel('ERROR')
logger.info('Enabled distributed training.')
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
if cfg.checkpoint_config is not None:
# save mmaction version in checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmact_version=__version__, config=cfg.text)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
output_list = []
for out in args.outputs:
output_list.append(mmcv.load(out))
if args.score_weights:
weights = np.array(args.score_weights) / sum(args.score_weights)
else:
weights = [1. / len(output_list) for _ in output_list]
def merge_scores(idx):
def merge_part(arrs, index, weights):
if arrs[0][index] is not None:
return np.sum([a[index] * w for a, w in zip(arrs, weights)],
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
if cfg.checkpoint_config is not None:
# save mmaction version in checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmact_version=__version__, config=cfg.text)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':