Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
sys.exit()
else:
assert False, "unhandled option: " + o
formattedcmdline.append('\t' + o + linkchar + a + ' \\')
formattedcmdline[len(formattedcmdline) - 1] = formattedcmdline[len(formattedcmdline) - 1][:-2]
# write out the command used
tide_util.savecommandline(thearguments, outputroot)
tide_io.writevec(formattedcmdline, outputroot + '_formattedcommandline.txt')
memfile = open(outputroot + '_memusage.csv', 'w')
tide_util.logmem(None, file=memfile)
# set the number of MKL threads to use
if mklexists:
mkl.set_num_threads(mklthreads)
# if doglm is set, make sure we are generating app matrix
if doglm and cardcalconly:
print('doing glm fit requires phase projection - setting cardcalconly to False')
cardcalconly = False
# set up cardiac filter
arb_lower = minhrfilt / 60.0
arb_upper = maxhrfilt / 60.0
thecardbandfilter = tide_filt.noncausalfilter()
thecardbandfilter.settype('arb')
arb_lowerstop = arb_lower * 0.9
arb_upperstop = arb_upper * 1.1
thecardbandfilter.setfreqs(arb_lowerstop, arb_lower, arb_upper, arb_upperstop)
therespbandfilter = tide_filt.noncausalfilter()
therespbandfilter.settype('resp')
help="Number of threads to parallel processes for Intel MKL")
# Output
parser.add_argument('-o', '--outdir', default=os.getcwd(), help="Output directory")
###
# Parse and Read User Args
###
args = parser.parse_args()
try:
import mkl
mkl.set_num_threads(args.nthreads)
except ImportError:
pass
if not args.degree and not args.eigen:
raise SystemExit("--degree and/or --eigen must be specified")
method_options = [args.degree, args.eigen]
if not args.binarize and not args.weighted:
raise SystemExit("--binarize and/or --weighted must be specified")
weight_options = [args.binarize, args.weighted]
if args.pvalue is not None:
option = 0
threshold = args.pvalue
elif args.sparsity is not None:
option = 1
def main(tseries_fpath, k, plot_foldpath):
import mkl
mkl.set_num_threads(16)
initialize_matplotlib()
X = np.genfromtxt(tseries_fpath)[:,1:]
aux = X.sum(axis=1)
fix = np.where(aux == 0)[0]
X[fix] += .001 #fixing zero only rows
X = X.copy()
cent, assign, shift, dists_cent = ksc.inc_ksc(X, k)
for i in xrange(cent.shape[0]):
t_series = cent[i]
plt.plot(t_series, '-k')
plt.gca().get_xaxis().set_visible(False)
# We need to do a bunch of imports
import pyroomacoustics as pra
import os
import numpy as np
from scipy.io import wavfile
import mkl as mkl_service
import doa
from tools import rfft, polar_error, polar_distance, gen_sig_at_mic_stft, gen_diracs_param
# initialize local RNG seed
np.random.seed(seed)
# for such parallel processing, it is better
# to deactivate multithreading in mkl
mkl_service.set_num_threads(1)
# number of sources
K = number_sources
# Generate "groundtruth" Diracs at random
alpha_gt, phi_gt, time_stamp = gen_diracs_param(
K, positive_amp=True, log_normal_amp=False,
semicircle=False, save_param=False
)
# generate complex base-band signal received at microphones
y_mic_stft, y_mic_stft_noiseless = \
gen_sig_at_mic_stft(phi_gt, alpha_gt, pmt['mic_array'][:2,:], SNR,
pmt['fs'], fft_size=pmt['nfft'], Ns=pmt['num_snapshots'])
# dict for output
from trainer import Trainer
from utils import (update_task, get_max_of_db_column,
get_a_task, ExploitationNeeded,
LossIsNaN, get_task_ids_and_scores, PopulationFinished,
get_col_from_populations, RemainingTasksTaken,
print_with_time, ExploitationOcurring,
create_new_population)
from config import (get_optimizer, DATA_DIR, MODEL_CLASS, LOSS_FN,
HYPERPARAM_NAMES, EPOCHS, BATCH_SIZE, POPULATION_SIZE,
EXPLOIT_INTERVAL, USE_SQLITE)
if __name__ == "__main__":
# TODO: Does this help?
nproc = mkl.get_max_threads() # e.g. 12
mkl.set_num_threads(nproc)
parser = argparse.ArgumentParser(description="Population Based Training")
parser.add_argument("-g", "--gpu", type=int, default=0, help="Selects GPU with the given ID. IDs are those shown in nvidia-smi.") # noqa
parser.add_argument("-p", "--population_id", type=int, default=None, help="Resumes work on the population with the given ID. Use -1 to select the most recently created population. Without this flag, a new population will be created.") # noqa
parser.add_argument("-e", "--exploiter", action="store_true", help="Set this process as the exploiter. It will be responsible for running the exploit step over the entire population at the end of each interval.") # noqa
args = parser.parse_args()
gpu = args.gpu
population_id = args.population_id
exploiter = args.exploiter
inputs = bcolz.open(osp.join(DATA_DIR, "trn_inputs.bcolz"), 'r')
targets = bcolz.open(osp.join(DATA_DIR, "trn_targets.bcolz"), 'r')
pathlib.Path('checkpoints').mkdir(exist_ok=True)
checkpoint_str = "checkpoints/pop-%03d_task-%03d.pth"
interval_limit = int(np.ceil(EPOCHS / EXPLOIT_INTERVAL))
table_name = "populations"
def __init__(self, fingerprintsA, fingerprintsB=None, chemicalKernelmat=None, nthreads=4):
self.dtype = 'float64'
self.nthreads = nthreads
try:
import mkl
mkl.set_num_threads(self.nthreads)
except:
raise Warning('NUMPY DOES NOT SEEM TO BE LINKED TO MKL LIBRARY SO NTHREADS IS IGNORED')
self.fingerprintsA = fingerprintsA
self.fingerprints_infoA = self.get_info(fingerprintsA)
pairsA = self.fingerprints_infoA['pairs']
Nframe = len(fingerprintsA)
if fingerprintsB is not None:
self.fingerprintsB = fingerprintsB
self.fingerprints_infoB = self.get_info(fingerprintsB)
pairsB = self.fingerprints_infoB['pairs']
Mframe = len(fingerprintsB)
else:
pairsB = pairsA
Mframe = Nframe
import pytest
import mkl
import uuid
from numba import cuda
from qiskit import Aer, QuantumCircuit
from qiskit.compiler import transpile, assemble
mkl.set_num_threads(1)
backend = Aer.get_backend("qasm_simulator")
default_options = {
"method": "statevector", # Force dense statevector method for benchmarks
"truncate_enable": False, # Disable unused qubit truncation for benchmarks
"max_parallel_threads": 1 # Disable OpenMP parallelization for benchmarks
}
# def _execute(circuit, backend_options=None):
# experiment = transpile(circuit, backend)
# qobj = assemble(experiment, shots=1)
# qobj_aer = backend._format_qobj(qobj, backend_options, None)
# return backend._controller(qobj_aer)
def _execute(controller, qobj_aer):
controller(qobj_aer)
def set_thread_count(threads):
"""Sets the maximum number of MKL threads for this process."""
if MKL_THREADS is not None:
mkl.set_num_threads(max(1, threads))
from pathlib import Path
import os
os.nice(1) # be nice
try:
import mkl # assume numpy from anaconda
mkl.set_num_threads(1)
except ModuleNotFoundError:
pass
os.environ['OMP_NUM_THREADS'] = str(1) # recommended for HPC systems
os.environ['GOMP_NUM_THREADS'] = str(1) # recommended for HPC (maybe gnu omp)
os.environ['MKL_NUM_THREADS'] = str(1)
os.environ['NUMEXPR_NUM_THREADS'] = str(1)
git_root = Path(__file__).parent.parent.resolve().expanduser()
from . import (
activity,
def execute(self):
#import the algorithm module
try:
importStr = 'from algorithm.rating.' + self.config['recommender'] + ' import ' + self.config['recommender']
exec (importStr)
except ImportError:
importStr = 'from algorithm.ranking.' + self.config['recommender'] + ' import ' + self.config['recommender']
exec (importStr)
if self.evaluation.contains('-cv'):
k = int(self.evaluation['-cv'])
if k <= 1 or k > 10:
k = 3
mkl.set_num_threads(max(1,mkl.get_max_threads()/k))
#create the manager
manager = Manager()
m = manager.dict()
i = 1
tasks = []
binarized = False
if self.evaluation.contains('-b'):
binarized = True
for train,test in DataSplit.crossValidation(self.trainingData,k,binarized=binarized):
fold = '['+str(i)+']'
if self.config.contains('social'):
recommender = self.config['recommender'] + "(self.config,train,test,self.relation,fold)"
else:
recommender = self.config['recommender']+ "(self.config,train,test,fold)"