Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def step_data(environment='MineRLObtainDiamondDense-v0'):
d = minerl.data.make(environment)
# Iterate through batches of data
for obs, rew, done, act in itertools.islice(d.seq_iter(1, 32), 600):
print("Act shape:", len(act), act)
print("Obs shape:", len(obs), [elem for elem in obs.items() if elem[0] != 'pov'])
print("Rew shape:", len(rew), rew)
print("Done shape:", len(done), done)
time.sleep(0.1)
import minerl.data
import os
if __name__ == "__main__":
data_dir = os.getenv('MINERL_DATA_ROOT', 'data')
data_dir = 'data' if not data_dir else data_dir
print("Verifying (and downloading) MineRL dataset..\n"
"\t**If you do not want to use the data**:\n\t\t run the local evaluation scripts with `--no-data`\n"
"\t**If you want to use your existing download of the data**:\n "
"\t\tmake sure your MINERL_DATA_ROOT is set.\n\n")
print("Data directory is {}".format(data_dir))
should_download = True
try:
data = minerl.data.make('MineRLObtainDiamondVectorObf-v0', data_dir=data_dir)
assert len(data._get_all_valid_recordings(data.data_dir)) > 0
should_download = False
except FileNotFoundError:
print("The data directory does not exist in your submission, are you running this script from"
" the root of the repository? data_dir={}".format(data_dir))
except RuntimeError:
print("The data contained in your data directory is out of date! data_dir={}".format(data_dir))
except AssertionError:
print("No MineRLObtainDiamond-v0 data found. Did the data really download correctly?" )
if should_download:
print("Attempting to download the dataset...")
minerl.data.download(data_dir)
print("Data verified! A+!")
if args.action_wrapper == 'discrete':
action_converter = generate_discrete_converter(
args.env, args.prioritized_elements,
args.always_keys, args.reverse_keys,
args.exclude_keys, args.exclude_noop,
args.allow_pitch, args.max_camera_range,
args.num_camera_discretize)
elif args.action_wrapper == 'continuous':
action_converter = generate_continuous_converter(
args.env, args.allow_pitch, args.max_camera_range)
elif args.action_wrapper == 'multi-dimensional-softmax':
action_converter = generate_multi_dimensional_softmax_converter(
args.allow_pitch, args.max_camera_range, args.num_camera_discretize)
experts = ExpertDataset(
original_dataset=minerl.data.make(args.env, data_dir=args.expert),
observation_converter=observation_converter,
action_converter=action_converter,
frameskip=args.frame_skip, framestack=args.frame_stack,
shuffle=False)
# separate train data and validation data
all_obs = []
all_action = []
for i in range(experts.size):
obs, action, _, _, _ = experts.sample()
all_obs.append(obs)
all_action.append(action)
if args.frame_stack > 1:
all_obs = np.array(all_obs, dtype=LazyFrames)
else:
all_obs = np.array(all_obs)
exclude_keys=args.exclude_keys, exclude_noop=args.exclude_noop,
allow_pitch=True, max_camera_range=args.max_camera_range,
num_camera_discretize=args.num_camera_discretize)
elif args.action_wrapper == 'continuous':
action_converter = generate_continuous_converter(
env_name=args.env, allow_pitch=True,
max_camera_range=args.max_camera_range)
elif args.action_wrapper == 'multi-dimensional-softmax':
action_converter = generate_multi_dimensional_softmax_converter(
allow_pitch=True, max_camera_range=args.max_camera_range,
num_camera_discretize=args.num_camera_discretize)
if args.demo:
experts = None # dummy
else:
experts = ExpertDataset(
original_dataset=minerl.data.make(args.env, data_dir=args.expert),
observation_converter=observation_converter,
action_converter=action_converter,
frameskip=args.frame_skip, framestack=args.frame_stack,
shuffle=False)
# pretrain
if args.pretrain:
bc_opt = chainer.optimizers.Adam(alpha=2.5e-4)
bc_opt.setup(policy)
bc_agent = BehavioralCloning(policy, bc_opt,
minibatch_size=1024,
action_wrapper=args.action_wrapper)
all_obs = []
all_action = []
for i in range(experts.size):
obs, action, _, _, _ = experts.sample()
def main():
"""
This function will be called for training phase.
"""
# How to sample minerl data is document here:
# http://minerl.io/docs/tutorials/data_sampling.html
data = minerl.data.make(MINERL_GYM_ENV, data_dir=MINERL_DATA_ROOT)
# Sample code for illustration, add your training code below
env = gym.make(MINERL_GYM_ENV)
# actions = [env.action_space.sample() for _ in range(10)] # Just doing 10 samples in this example
# xposes = []
# for _ in range(1):
# obs = env.reset()
# done = False
# netr = 0
# # Limiting our code to 1024 steps in this example, you can do "while not done" to run till end
# while not done:
# To get better view in your training phase, it is suggested
# to register progress continuously, example when 54% completed