How to use the mediapipe.util.sequence.media_sequence.get_image_encoded_key function in mediapipe

To help you get started, we’ve selected a few mediapipe examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github google / mediapipe / mediapipe / examples / desktop / media_sequence / demo_dataset.py View on Github external
def parse_fn(sequence_example):
      """Parses a clip classification example."""
      context_features = {
          ms.get_example_id_key():
              ms.get_example_id_default_parser(),
          ms.get_clip_label_index_key():
              ms.get_clip_label_index_default_parser(),
          ms.get_clip_label_string_key():
              ms.get_clip_label_string_default_parser()
      }
      sequence_features = {
          ms.get_image_encoded_key(): ms.get_image_encoded_default_parser(),
      }
      parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
          sequence_example, context_features, sequence_features)
      example_id = parsed_context[ms.get_example_id_key()]
      classification_target = tf.one_hot(
          tf.sparse_tensor_to_dense(
              parsed_context[ms.get_clip_label_index_key()]), NUM_CLASSES)
      images = tf.map_fn(
          tf.image.decode_jpeg,
          parsed_sequence[ms.get_image_encoded_key()],
          back_prop=False,
          dtype=tf.uint8)
      return {
          "id": example_id,
          "labels": classification_target,
          "images": images,
github google / mediapipe / mediapipe / examples / desktop / media_sequence / charades_dataset.py View on Github external
ms.get_segment_label_string_default_parser()),
          ms.get_segment_start_timestamp_key(): (
              ms.get_segment_start_timestamp_default_parser()),
          ms.get_segment_end_timestamp_key(): (
              ms.get_segment_end_timestamp_default_parser()),
          ms.get_image_frame_rate_key(): (
              ms.get_image_frame_rate_default_parser()),
      }

      sequence_features = {
          ms.get_image_encoded_key(): ms.get_image_encoded_default_parser()
      }
      parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
          sequence_example, context_features, sequence_features)

      sequence_length = tf.shape(parsed_sequence[ms.get_image_encoded_key()])[0]
      num_segments = tf.shape(
          parsed_context[ms.get_segment_label_index_key()])[0]
      # segments matrix and targets for training.
      segments_matrix, indicator = one_hot_segments(
          tf.sparse_tensor_to_dense(
              parsed_context[ms.get_segment_start_index_key()]),
          tf.sparse_tensor_to_dense(
              parsed_context[ms.get_segment_end_index_key()]),
          sequence_length)

      classification_target = timepoint_classification_target(
          segments_matrix,
          tf.sparse_tensor_to_dense(
              parsed_context[ms.get_segment_label_index_key()]
              ) + CLASS_LABEL_OFFSET,
          NUM_CLASSES + CLASS_LABEL_OFFSET)
github google / mediapipe / mediapipe / examples / desktop / media_sequence / demo_dataset.py View on Github external
ms.get_clip_label_index_default_parser(),
          ms.get_clip_label_string_key():
              ms.get_clip_label_string_default_parser()
      }
      sequence_features = {
          ms.get_image_encoded_key(): ms.get_image_encoded_default_parser(),
      }
      parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
          sequence_example, context_features, sequence_features)
      example_id = parsed_context[ms.get_example_id_key()]
      classification_target = tf.one_hot(
          tf.sparse_tensor_to_dense(
              parsed_context[ms.get_clip_label_index_key()]), NUM_CLASSES)
      images = tf.map_fn(
          tf.image.decode_jpeg,
          parsed_sequence[ms.get_image_encoded_key()],
          back_prop=False,
          dtype=tf.uint8)
      return {
          "id": example_id,
          "labels": classification_target,
          "images": images,
      }
github google / mediapipe / mediapipe / examples / desktop / media_sequence / kinetics_dataset.py View on Github external
ms.get_clip_label_index_key(): tf.FixedLenFeature((), tf.int64),
      }

      sequence_features = {
          ms.get_image_encoded_key(): ms.get_image_encoded_default_parser(),
          ms.get_forward_flow_encoded_key():
              ms.get_forward_flow_encoded_default_parser(),
      }
      parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
          sequence_example, context_features, sequence_features)

      target = tf.one_hot(parsed_context[ms.get_clip_label_index_key()], 700)

      images = tf.image.convert_image_dtype(
          tf.map_fn(tf.image.decode_jpeg,
                    parsed_sequence[ms.get_image_encoded_key()],
                    back_prop=False,
                    dtype=tf.uint8), tf.float32)
      num_frames = tf.shape(images)[0]

      flow = tf.image.convert_image_dtype(
          tf.map_fn(tf.image.decode_jpeg,
                    parsed_sequence[ms.get_forward_flow_encoded_key()],
                    back_prop=False,
                    dtype=tf.uint8), tf.float32)
      # The flow is quantized for storage in JPEGs by the FlowToImageCalculator.
      # The quantization needs to be inverted.
      flow = (flow[:, :, :, :2] - 0.5) * 2 * 20.

      output_dict = {
          "labels": target,
          "images": images,

mediapipe

MediaPipe is the simplest way for researchers and developers to build world-class ML solutions and applications for mobile, edge, cloud and the web.

Apache-2.0
Latest version published 12 days ago

Package Health Score

91 / 100
Full package analysis