Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
df = pd.DataFrame(pickle.load(f))[["structure", prop_col]].dropna()
idx_list = list(range(len(df)))
kf = KFold(n_splits=5, random_state=18012019, shuffle=True)
for kf_idx, (remain_index, test_index) in enumerate(kf.split(idx_list)):
if kf_idx in kf_indices:
kf_tmp_output_path = os.path.join(
tmp_output_path, "kfold_{}".format(kf_idx)
)
if not os.path.exists(kf_tmp_output_path):
os.makedirs(kf_tmp_output_path, exist_ok=True)
train_index, val_index = train_test_split(
remain_index, test_size=0.25, random_state=18012019, shuffle=True
)
cgcnnfz = CGCNNFeaturizer(
task=args.task,
distributed=distributed,
n_works=args.n_works,
disable_cuda=disable_cuda,
save_idx=kf_tmp_output_path,
output_path=kf_tmp_output_path,
atom_init_fea=atom_features,
use_batch=False,
test=args.test,
dropout_percent=0.5,
batch_size=args.batch_size,
warm_start_file=args.warm_start,
warm_start_latest=True,
use_pretrained=False,
save_model_to_dir=os.path.join(kf_tmp_output_path, "model"),
save_checkpoint_to_dir=os.path.join(kf_tmp_output_path, "checkpoint"),
def _add_external(self, fset):
# Prevent import errors
require_external = []
if torch and cgcnn:
require_external.append(sf.CGCNNFeaturizer())
if dscribe:
require_external.append(sf.SOAP())
return fset + require_external