How to use the mapclassify.Quantiles function in mapclassify

To help you get started, we’ve selected a few mapclassify examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ResidentMario / geoplot / examples / plot_obesity.py View on Github external
import pandas as pd
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mapclassify as mc

# load the data
obesity_by_state = pd.read_csv(gplt.datasets.get_path('obesity_by_state'), sep='\t')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
contiguous_usa['Obesity Rate'] = contiguous_usa['state'].map(
    lambda state: obesity_by_state.query("State == @state").iloc[0]['Percent']
)
scheme = mc.Quantiles(contiguous_usa['Obesity Rate'], k=5)


ax = gplt.cartogram(
    contiguous_usa,
    scale='Obesity Rate', limits=(0.75, 1),
    projection=gcrs.AlbersEqualArea(central_longitude=-98, central_latitude=39.5),
    hue='Obesity Rate', cmap='Reds', scheme=scheme,
    linewidth=0.5,
    legend=True, legend_kwargs={'loc': 'lower right'}, legend_var='hue',
    figsize=(8, 12)
)
gplt.polyplot(contiguous_usa, facecolor='lightgray', edgecolor='None', ax=ax)

plt.title("Adult Obesity Rate by State, 2013")
plt.savefig("obesity.png", bbox_inches='tight', pad_inches=0.1)
github geopandas / geopandas / examples / plotting_with_geoplot.py View on Github external
# use the Orthographic map projection (e.g. a world globe)
ax = geoplot.polyplot(
    world, projection=geoplot.crs.Orthographic(), figsize=(8, 4)
)
ax.outline_patch.set_visible(True)

###############################################################################
# ``polyplot`` is trivial and can only plot the geometries you pass to it. If
# you want to use color as a visual variable, specify a ``choropleth``. Here
# we sort GDP per person by country into five buckets by color, using
# "quantiles" binning from the `Mapclassify `_
# library.

import mapclassify
gpd_per_person = world['gdp_md_est'] / world['pop_est']
scheme = mapclassify.Quantiles(gpd_per_person, k=5)

# Note: this code sample requires geoplot>=0.4.0.
geoplot.choropleth(
    world, hue=gpd_per_person, scheme=scheme,
    cmap='Greens', figsize=(8, 4)
)

###############################################################################
# If you want to use size as a visual variable, use a ``cartogram``. Here are
# population estimates for countries in Africa.

africa = world.query('continent == "Africa"')
ax = geoplot.cartogram(
    africa, scale='pop_est', limits=(0.2, 1),
    edgecolor='None', figsize=(7, 8)
)
github ResidentMario / geoplot / examples / plot_largest_cities_usa.py View on Github external
This example, taken from the User Guide, plots cities in the contiguous United States by their
population. It demonstrates some of the range of styling options available in ``geoplot``.
"""


import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mapclassify as mc

continental_usa_cities = gpd.read_file(gplt.datasets.get_path('usa_cities'))
continental_usa_cities = continental_usa_cities.query('STATE not in ["AK", "HI", "PR"]')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
scheme = mc.Quantiles(continental_usa_cities['POP_2010'], k=5)

ax = gplt.polyplot(
    contiguous_usa, 
    zorder=-1,
    linewidth=1,
    projection=gcrs.AlbersEqualArea(),
    edgecolor='white',
    facecolor='lightgray',
    figsize=(8, 12)
)
gplt.pointplot(
    continental_usa_cities, 
    scale='POP_2010',
    limits=(2, 30),
    hue='POP_2010',
    cmap='Blues',

mapclassify

Classification Schemes for Choropleth Maps.

BSD-3-Clause
Latest version published 3 months ago

Package Health Score

79 / 100
Full package analysis

Similar packages