How to use the ludwig.api.LudwigModel function in ludwig

To help you get started, weโ€™ve selected a few ludwig examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github uber / ludwig / tests / integration_tests / test_server.py View on Github external
def train_model(input_features, output_features, data_csv):
    """
    Helper method to avoid code repetition in running an experiment
    :param input_features: input schema
    :param output_features: output schema
    :param data_csv: path to data
    :return: None
    """
    model_definition = {
        'input_features': input_features,
        'output_features': output_features,
        'combiner': {'type': 'concat', 'fc_size': 14},
        'training': {'epochs': 2}
    }

    model = LudwigModel(model_definition)

    # Training with csv
    model.train(
        data_csv=data_csv,
        skip_save_processed_input=True,
        skip_save_progress=True,
        skip_save_unprocessed_output=True
    )

    model.predict(data_csv=data_csv)

    # Remove results/intermediate data saved to disk
    shutil.rmtree(model.exp_dir_name, ignore_errors=True)

    # Training with dataframe
    data_df = read_csv(data_csv)
github uber / ludwig / tests / integration_tests / test_visualization_api.py View on Github external
def run_api_experiment(input_features, output_features):
    """
    Helper method to avoid code repetition in running an experiment
    :param input_features: input schema
    :param output_features: output schema
    :return: None
    """
    model_definition = {
        'input_features': input_features,
        'output_features': output_features,
        'combiner': {'type': 'concat', 'fc_size': 14},
        'training': {'epochs': 2}
    }

    model = LudwigModel(model_definition)
    return model
github uber / ludwig / tests / integration_tests / test_visualization_api.py View on Github external
def setup_model(self):
        """Configure and setup test model"""
        model_definition = {
            'input_features': self.input_features,
            'output_features': self.output_features,
            'combiner': {'type': 'concat', 'fc_size': 14},
            'training': {'epochs': 2}
        }
        self.model = LudwigModel(model_definition)
github TwoRavens / TwoRavens / tworaven_apps / solver_interfaces / util_model.py View on Github external
return ModelSklearn(
                model=joblib.load(os.path.join(model_folder_path, 'model.joblib')),
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                system=metadata['system'],
                model_id=model_id,
                search_id=metadata['search_id'],
                train_specification=metadata['train_specification'],
                preprocess=preprocess,
                task=metadata['task'])

        if metadata['system'] == 'ludwig':
            from ludwig.api import LudwigModel
            return ModelLudwig(
                model=LudwigModel.load(model_folder_path),
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                model_id=model_id,
                search_id=metadata['search_id'],
                task=metadata['task'])

        if metadata['system'] == 'h2o':
            import h2o
            h2o.init()
            return ModelH2O(
                model=h2o.load_model(os.path.join(model_folder_path, metadata['model_filename'])),
                model_id=model_id,
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                search_id=metadata['search_id'],
                train_specification=metadata['train_specification'],
github TwoRavens / TwoRavens / tworaven_apps / solver_interfaces / util_model.py View on Github external
return ModelSklearn(
                model=joblib.load(os.path.join(model_folder_path, 'model.joblib')),
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                system=metadata['system'],
                model_id=model_id,
                search_id=metadata['search_id'],
                train_specification=metadata['train_specification'],
                preprocess=preprocess,
                task=metadata['task'])

        if metadata['system'] == 'ludwig':
            from ludwig.api import LudwigModel
            return ModelLudwig(
                model=LudwigModel.load(model_folder_path),
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                model_id=model_id,
                search_id=metadata['search_id'],
                task=metadata['task'])

        if metadata['system'] == 'h2o':
            import h2o
            h2o.init()
            return ModelH2O(
                model=h2o.load_model(os.path.join(model_folder_path, metadata['model_filename'])),
                model_id=model_id,
                predictors=metadata['predictors'],
                targets=metadata['targets'],
                search_id=metadata['search_id'],
                train_specification=metadata['train_specification'],
github uber / ludwig / ludwig / api.py View on Github external
def test_train(
        data_csv,
        model_definition,
        batch_size=128,
        gpus=None,
        gpu_fraction=1,
        debug=False,
        logging_level=logging.ERROR,
        **kwargs
):
    ludwig_model = LudwigModel(model_definition, logging_level=logging_level)

    train_stats = ludwig_model.train(
        data_csv=data_csv,
        gpus=gpus,
        gpu_fraction=gpu_fraction,
        debug=debug
    )

    logger.critical(train_stats)

    # predict
    predictions = ludwig_model.predict(
        data_csv=data_csv,
        batch_size=batch_size,
        gpus=gpus,
        gpu_fraction=gpu_fraction,
github uber / ludwig / ludwig / api.py View on Github external
# Return

        :return: (LudwigModel) a LudwigModel object


        # Example usage

        ```python
        ludwig_model = LudwigModel.load(model_dir)
        ```

        """

        model, model_definition = load_model_and_definition(model_dir)
        ludwig_model = LudwigModel(model_definition)
        ludwig_model.model = model
        ludwig_model.train_set_metadata = load_metadata(
            os.path.join(
                model_dir,
                TRAIN_SET_METADATA_FILE_NAME
            )
        )
        return ludwig_model
github uber / ludwig / mkdocs / code_doc_autogen.py View on Github external
#             preprocessing.sequence.skipgrams,
#             preprocessing.sequence.make_sampling_table,
#         ],
#         'classes': [
#             preprocessing.sequence.TimeseriesGenerator,
#         ],
#         'all_module_functions': [initializers],
#         'all_module_classes': [initializers]
#     }
# ]

PAGES = [
    {
        'page': 'api/LudwigModel.md',
        'classes': [
            (LudwigModel, "*")
        ],
    },
    {
        'page': 'api/visualization.md',
        'functions': [
            learning_curves,
            compare_performance,
            compare_classifiers_performance_from_prob,
            compare_classifiers_performance_from_pred,
            compare_classifiers_performance_subset,
            compare_classifiers_performance_changing_k,
            compare_classifiers_multiclass_multimetric,
            compare_classifiers_predictions,
            confidence_thresholding_2thresholds_2d,
            confidence_thresholding_2thresholds_3d,
            confidence_thresholding,
github uber / ludwig / ludwig / api.py View on Github external
batch_size=128,
        gpus=None,
        gpu_fraction=1,
        debug=False,
        logging_level=logging.ERROR,
        **kwargs
):
    model_definition = merge_with_defaults(model_definition)
    data, train_set_metadata = build_dataset(
        data_csv,
        (model_definition['input_features'] +
         model_definition['output_features']),
        model_definition['preprocessing']
    )

    ludwig_model = LudwigModel(model_definition, logging_level=logging_level)
    ludwig_model.initialize_model(train_set_metadata=train_set_metadata)

    ludwig_model.train_online(
        data_csv=data_csv,
        batch_size=128,
        gpus=gpus,
        gpu_fraction=gpu_fraction,
    )
    ludwig_model.train_online(
        data_csv=data_csv,
        batch_size=128,
        gpus=gpus,
        gpu_fraction=gpu_fraction,
    )

    # predict