How to use the lime.discretize.BaseDiscretizer.__init__ function in lime

To help you get started, we’ve selected a few lime examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github marcotcr / lime / lime / discretize.py View on Github external
def __init__(self, data, categorical_features, feature_names, labels=None, random_state=None):
        BaseDiscretizer.__init__(self, data, categorical_features,
                                 feature_names, labels=labels,
                                 random_state=random_state)
github marcotcr / lime / lime / discretize.py View on Github external
def __init__(self, data, categorical_features, feature_names, labels=None, random_state=None,
                 data_stats=None):

        BaseDiscretizer.__init__(self, data, categorical_features,
                                 feature_names, labels=labels,
                                 random_state=random_state,
                                 data_stats=data_stats)
github marcotcr / lime / lime / discretize.py View on Github external
def __init__(self, data, categorical_features, feature_names, labels=None, random_state=None):

        BaseDiscretizer.__init__(self, data, categorical_features,
                                 feature_names, labels=labels,
                                 random_state=random_state)
github marcotcr / lime / lime / discretize.py View on Github external
def __init__(self, data, categorical_features, feature_names, labels=None, random_state=None):
        if(labels is None):
            raise ValueError('Labels must be not None when using \
                             EntropyDiscretizer')
        BaseDiscretizer.__init__(self, data, categorical_features,
                                 feature_names, labels=labels,
                                 random_state=random_state)