Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main(conf):
train_set = LhotseDataset(OnTheFlyMixing(), 300, 0)
val_set = LhotseDataset(PreMixedSourceSeparationDataset(sources_set=CutSet.from_yaml('data/cuts_sources.yml.gz'),
mixtures_set=CutSet.from_yaml('data/cuts_mix.yml.gz'),
root_dir="."), 300, 0)
train_loader = DataLoader(train_set, shuffle=True,
batch_size=conf['training']['batch_size'],
num_workers=conf['training']['num_workers'],
drop_last=True)
val_loader = DataLoader(val_set, shuffle=False,
batch_size=conf['training']['batch_size'],
num_workers=conf['training']['num_workers'],
drop_last=True)
# Update number of source values (It depends on the task)
#conf['masknet'].update({'n_src': train_set.n_src})
class Model(torch.nn.Module):
def __init__(self, net):
def main(conf):
train_set = LhotseDataset(OnTheFlyMixing(), 300, 0)
val_set = LhotseDataset(PreMixedSourceSeparationDataset(sources_set=CutSet.from_yaml('data/cuts_sources.yml.gz'),
mixtures_set=CutSet.from_yaml('data/cuts_mix.yml.gz'),
root_dir="."), 300, 0)
train_loader = DataLoader(train_set, shuffle=True,
batch_size=conf['training']['batch_size'],
num_workers=conf['training']['num_workers'],
drop_last=True)
val_loader = DataLoader(val_set, shuffle=False,
batch_size=conf['training']['batch_size'],
num_workers=conf['training']['num_workers'],
drop_last=True)
# Update number of source values (It depends on the task)
#conf['masknet'].update({'n_src': train_set.n_src})
class Model(torch.nn.Module):
def __init__(self, net):
super(Model, self).__init__()
def parse_yaml(y):
y = load_yaml(y)
rec_ids = {}
for entry in y:
key = entry["features"]["recording_id"]
if key not in rec_ids.keys():
rec_ids[key] = [entry["features"]["storage_path"]]
else:
rec_ids[key].append(entry["features"]["storage_path"])
return rec_ids