How to use the lakehouse.PySparkMemLakehouse function in lakehouse

To help you get started, we’ve selected a few lakehouse examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dagster-io / dagster / python_modules / lakehouse / lakehouse_tests / test_basic_pyspark_lakehouse.py View on Github external
def test_execute_in_mem_lakehouse(execute_spark_lakehouse_build):
    lakehouse = PySparkMemLakehouse()
    pipeline_result = execute_spark_lakehouse_build(
        tables=[TableOne, TableTwo, TableThree],
        lakehouse=lakehouse,
        environment_dict={'solids': {'TableOne': {'inputs': {'num': {'value': 1}}}}},
    )

    assert pipeline_result.success

    assert lakehouse.collected_tables == {
        'TableOne': [Row(num=1)],
        'TableTwo': [Row(num=2)],
        'TableThree': [Row(num=1), Row(num=2)],
    }